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SECTION 1

SUMMARY

The a priori prediction of multinozzle rocket exhaust flow fields is

addressed in detail. The fundamental requirements for accurate prediction of

plume IR signature are derived and new quantitative relationships between

optical signal and plume properties are derived. It is shown that, among a

variety of requirements, plume models must include an accurate detailed

description of the three dimensional near field of the multinozzle plume self

impingement to achieve the accuracy and reliabilty of the optical predictions,

over the desired altitude range. The qualitative structure of these complex

*three dimensional flow fields is explained for the first time. Several of the

regulating flow processes thus identified are three dimensional in nature and

have no counterparts in classical two dimensional supersonic flow theory. One

such process, the intersection of two three dimensional shock surfaces, is

discussed in detail and a qualitative account of the developing pattern is

given. A numerical procedure, "the floating fitted shock" technique, fit the
~requirements of accuracy and generality necessary for the computation of the

multinozzle plume flow fields. This method is conceded to be the most

desirable, albeit most complex, for the solution of supersonic flows. A

computer code was devised which contained discrete discontinuities including

slip surfaces, a shock surface and a complex sonic shock/centered expansion

singular point based on a boundary point calculation which properly accounts

for the three dimensional propagation of characteristics. The code was

successful for simplified geometries but could not be increased in generality

to handle the complete flow pattern. An analysis for the Mach disc flow field

in an axisymmetric plume was derived which leads to a basic interaction

equation. A numerical procedure for solving this equation along with the

other governing one dimensional equation uses the novel approach of first

locating the sonic throat position and then integrating the equations

upstream. Several test cases are presented which include viscous mixing for

the first time. This method should provide more reliable calculation

procedure for these flow fields than now exists.
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SECTION 2

INTRODUCTION

Detailed understanding of jet and rocket engine exhaust flow fields is

required in a wide variety of Air Force space and missile programs.

Predictions of infrared signature, radar cross section, electromagnetic wave

attenuation, and production and dispersion of noxious pollutants are examples

of the exhaust system properties which are fundamental in both conceptual

systems studies and actual design and development programs. These exhaust

properties are the subject of a broad area of study known as plume

phenomology- a multidisciplinary study encompassing the sciences of fluid

mechanics, chemical kinetics and optical radiative transport theory. Often

system design requirements and programmatic study definitions require state of

the art or perhaps beyond predictive capabilities in each of these disciplines

to provide the desired information and definitions. This research program was

aimed at extending the state of the art of fluid mechanical prediction

techniques while keeping in mind how these advances would fit in the broader

overall plume phenomology program.

Plume fluid mechanics is the underlying physical science in plume

phenomology as the spatial distribution of thermochemical properties it

defines provides the structure upon which chemical kinetics and subsequently

radiative transport are predicted. The main area of interest was the fluid

dynamics of multiple nozzle exhaust systems. This study was aimed at the

inviscid structure of this flow as it forms the "skeleton" upon which is built

the complete flow field including the turbulent (reacting) mixing layer and
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viscous far field. This portion of the effort was therefore the study of

inviscid three dimensional supersonic flow fields containing complex shock

systems. Plume flow fields can contain Mach discs and hence regions of

subsonic flow. Understanding and modelling of these phenomena was a second

area of study.

The flow field created by the exhaust of a multiple nozzle exhaust system

* is a complex three dimensional flow. The inviscid flow defines the shock wave

structure of a plume which is of prime importance in predicting plume

observables. The shock waves are responsible for both local sharp increases

, in temperature and pressure and far field temperature increments. The far

field effect is a product of the entropy rise (total pressure loss),

associated with the shock waves, which persists downstream showing up there as

an increment in temperature above the isentropic far field temperature. Both

optical radiation and chemical kinetic processes are governed by eauations all

of which contain "Arrhenius" type exponential factors [exp (-B/T)]. In the

case of optical radiation B is the second radiation constant divided by the

wavelength. The "characteristic" temperature B of these processes is

generally high so that chemical activity and radiative source terms are most

prominant in regions of high temperature. In cases where B is much larger

than the maximum temperature the regions of high chemical reaction or

radiative emission reduce to extremely thin sheets. Thus the shock wave

structure which is the primary factor in determining both local and far field

temperature levels is a central determining factor in chemical activity and

optical radiation. For example, it is clear from many axisymmetric flow field

studies (c.f. Ref. 2-1) that shock structure and peaks in plume IR station

radiation are highly correlated. in Ref. 2-2 the central role of far field
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temperature on plume radiation was demonstrated clearly. It is for these

reasons that detailed predictive capabilities of the three dimensional flow

and shock structure were sought for the multiple nozzle flows.

The pursuit of solutions to the three dimensional plume flow fields

requires the numerical solution of the Euler Equations. For supersonic flows

these are a set of hyperbolic partial differential equations which forms an

initial value problem. These problems are suited (in theory) to straight

forward marching numerical solution techniques. Experimental evidence (Ref.

2-3) showed that there were at least three and most probably more shock wave

configurations possible for twin nozzle flow fields. The specific

configuation being determined by individual nozzle exit properties, nozzle

spacing and background pressure and flow properties. The full diversity of

flow configurations possible may be very broad and include many configurations

not yet observed. For two reasons it was deemed desirable to seek numerical

solutions of these flow fields in which the shock waves were "fitted". That

is, in the calculation procedure the shock wave surfaces are considered to be

discrete discontinuous surfaces which are tracked as part of the solution.

The first reason derives from the discussion in the previous paragraph.

Optical and radiative transport equations are extemely sensitive to

temperature so that the most accurate temperature predictions are desireable.

Secondly, the alternative approach "shock capturing" produces a shock wave in

a two dimensional flow that is portrayed in the solution as a dispersed

compression spread over three to five mesh intervals. There are generally

overshoots and undershoots involved in the flow quantities and the solution in
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the neighborhood of the shock wave is therefore unreliable and contains order

unity inaccuracy. The multinozzle plume is a three dimensional flow

containing shock intersections which would likewise have five by five mesh

regions of questionable accuracy. Therefore it appears that with the complex

shock structure that exists in the subject flow "shock capturing" would

produce results that either (1) had an inordinate percentage of mesh points

inaccurate because of nearby shocks or shock intersections or (2) required an

inordinate number of mesh points to cirmcumvent this problem.

The only previous complex three dimensional calculations (Ref. 2-4)

employing fitted shock waves was for space shuttle type configurations in

which the general shape and topology of the shock pattern is known. In that

case very elegant r precise mapping techniques were brought to bear on the

problem to simplify the computer program logic. Since the shock wave surface

configurations for the multinozzle plume flow fields is not known precisely

and can take on any one of a number of general configurations a more general

numerical technique was pursued. This is referred to as the floating "fitted"

shock wave technique and, in fact, employed floating discontinuties and

singularities more general than shock waves. In this method (cf. Moretti

Ref. 2-5) the shock wave surfaces are not mapped to the boundaries of

computational domains, rather they are permitted to traverse a relatively

stationary computational grid. In theory the scheme does not require a priori

knowledge of the shock wave configuration and so would be ideal for the

problem at hand. The price for this generality is very heavy and two fold.

First the computer logic is extremely complex as it must anticipate a large

number of geometrical configurations and combination of configurations. And,
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secondly, the details of the three dimensional phenomenon must be understood

so that local solutions can be incorporated into the flow field. For example,

in this "fitted singularity" approach the exact local solution for the shock

intersection with the plume boundary was incorporated in the solution. The

exact details of the reflected Prandtl Meyer expansion wave and sonic nature

of the impinging shock are employed in a special cell calculation. This

singular point was free to traverse the computational mesh as the solution

progressed and pass from one cell to the next. In this way the calculation

procedure is similar to finite element methods with the added feature that

the cell containing this singularity changes automatically as the shock moves

and the calculation proceeds. Unfortunately there are several other

singularities which are not presently understood that must be modelled to

accurately predict the three dimensional flow fields. One of these occurs

when two three dimensional shock surfaces intersect and subsequently develop

into an irregular reflection. This problem was studied theoretically and a

qualitative description of the flow field development was derived employing

hodograph techiques.

The solution of plume flow fields with Mach discs open up an entirely new

set of requirements for numerical calculations and theoretical assessment.

The exhaust gas flow fields, aside from regions downstream of Mach discs, are

supersonic and as such are governed by hyperbolic partial differential

equations. These equations have solutions which at any point can be expressed

solely on the basis of flow properties upstream of that point. Therefore, the

numerical solution of these equations proceeds, at least in principle, by a

step by step or marching procedure. The flow downstream of Mach discs on the
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other hand is subsonic and as such is governed by elliptic partial

differential equations. The solution to these equations at any point depends

on the solution at all neighboring points both upstream and downstream. Thus

the solution at any specific point is related to all the boundary values of

the flow properties surrounding the subsonic region. The plume containing a

Mach disc is thus a mixed type flow containing regions of both subsonic and

supersonic flow that is similar in many ways to more familiar transonic flows.

These flows are computed numerically by overall relaxation schemes (cf. Ref.

2-6.).

The Mach disc flow field has a critical property that was exploited by

Abbett (Ref. 2-7) to explain the determining factor for the shock triple point

location. He observed that the flow which passes through the normal shock

portion of the Mach disc is subsequently accelerated downstream to supersonic

velocities. This subsonic/supersonic stream tube is analogous to a De Laval

nozzle with a choking or saddle point singularity condition at the throat.

The location of the Mach disc itself is determined as that position which is

compatible with a smooth acceleration through the sonic singularity. An

important approximation which greatly simplifies the solution of plumes with

Mach discs was given by Abbett (Ref. 2-7) and later employed by Salas (Ref

2-8). The subsonic portion of the flow field is approximated using one

dimensional flow analysis. The location of the Mach disc is estimated and the

subsequent supersonic outer flow and subsonic one dimensional flow is

calculated. The unique solution is determined by finding the location of the

Mach disc which results in sonic velocity occurring at the same point as the

minimum area. Several possible Mach disc locations are employed to iterate
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and determine a bracket for the possible location of the Mach disc. This

method has been used (Salas Ref.2-8) with success in the past to determine a

range of plume flow fields with Mach discs. However, the method has several

drawbacks. It does not provide any theoretical explanation of the

relationship of the solution to overall flow properties, it does not include

viscous effects, and it has questionable numerical reliability.

The forward integration of the subsonic equations is a tricky procedure

at best and is questionable. The set of equations governing the subsonic

streamtube has a positive eigenvalue. Thus it possesses exponentially growing

solutions (unstable). Compounding this fact, the exponential factor is

proportional to (1 M2) 1 so that as the sonic singularity is approached

forward marching numerical procedures become useless. In view of the rapid

changes in the solution near the throat a compromise must be struck between

accuracy and the ability to generate solutions at all. In the present work a

solution procedure is developed which resolves this dilemma. In the inviscid

case the sonic throat location is determined first and then the equations are

solved by integration in the upstream direction.

The analysis which is developed leads to a central qoverninq interaction

equation. This equation coupled with the familiar one dimensional flow

equations and the supersonic flow equations for the outer plume stream help to

delineate the underlying processes driving the solution. The strong

interaction between the subsonic flow which passed through the normal shock

portion of the Mach disc and the supersonic flow which passed through the

oblique shock is evident through a term which is related to the Reimann

invariant on the downward running characteristics. Thus the explicit effect
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of the plume outer boundary properties on the Mach disc solution is made clear

for the first time. In addition viscous mixing between the two streams is

incorporated into the analysis via a simple one dimensional analysis. In the

inviscid case determination of the exact location of the sonic throat is

possible based on an estimated supersonic flow and an assumed location of the

shock triple point. In the viscous case a further iteration is necessary.

In the following section a qualitative analysis of the multinozzle plume

flow field is discussed. The various three dimensional features of the flow

are pointed out in the context of the overall flow structure. Section 4

reviews the relationship between the plume fluid/thermochemical distributions

and the resulting IR signature. The mathematical relationship between optical

emission and flow properties is derived. In Section 5 the floating fitted

shock numerical technique is outlined and the three dimensional boundary point

calculation is described. A sample calculation for a simplified geometry is

presented. Section 6 presents the study of the intersection of two three

dimensional shock surfaces. Section 7 briefly describes an alternate new

method for finite difference calculations which might reduce the enormous

logic load on the fitted discontinuity programs. Section 8 contains the

discussion, analysis and numerical computations for the Mach disc flow.
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SECTION 3

STRUCTURE OF MULTINOZZLE PLUME FLOW FIELDS

The structure of the multinozzle plume flow is dominated by complex three

dimensional flow phenomenon. These processes are not simply the extension of

" familiar two dimensional supersonic flow situations into a third dimension.

Rather they are new and peculiar to three dimensional flows and as such are

basically unknown to analysts. Therefore the ability to accurately model and

devise numerical schemes and their associated computer codes rests heavily on

first developing some understanding in these areas. There are two basic

situations that can be identified. The first and most striking is the problem

of the intersection cf three dimensional shock wave surfaces. The multinozzle

plume flow field contains several shock wave surfaces and these invariably

intersect. The subsequent development of the shock pattern is complex and

will be discussed in detail in a later section. Another situation peculiar to

three dimensional flows occurs when there is an abrupt change in geometry or

topology in the flow (i.e. transition of a shock reflection from a regular

reflection to a Mach reflection). This brings about an initialization problem

which is analogous to the flow at the leading edge of a wedge or the point of

a cone. These latter two are well known two dimensional supersonic flow

situations which have cataloged solutions. We call on our knowledge of these

catalogs to initialize or reinitialize two dimensional (or axisymmetric) flow

fields when there is an abrupt change in geometry (wall angle). These

catalogs do not exist in three dimensional flows. Beyond that the nature of

the solution is not known in any of these situations.
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In order to study the structure of the multinozzle plume flow field the

structure of the individual undisturbed exhaust plumes is first examined. Each

exhaust plume is axisymmetric and underexpanded. Figure 3-1 is a schematic of

one of these plumes. Supersonic exhaust flow leaves the rocket nozzle at the

exhaust plane. The ambient pressure at the exit plane is lower than the

exhaust plane pressure and the exhaust flow expands at the nozzle lip so that

the pressures of exhaust and ambient gases are matched along the plume

interface. The barrel shock forms in the single nozzle plume because

expansion waves (upward running characteristics) in the flow reflect from the

(near) constant pressure plume interface resulting in reflected compression

waves. These eveittually focus to start shock system (Bl)(see Fig. 3-1(a)).

The expansion waves which start this process -an arise in the conical like

source flow leaving the nozzle, however, even a uniform parallel exit flow

nozzle will produce the same result. The upward running characteristics

leaving the exit plane become expansion waves as they cross the Prandtl Meyer

expansion fan at the nozzle lip because the flow is axisymmetric and spreading

laterally. The axisymmetric nature of the flow causes the wave strength of

the Bl shock, Figure 3-1(b), to increase as it progresses downstream and

approaches the axis of the plume. A Mach disc and reflected shock system (B2)

develop downstream of the original barrel shock B. The flow behind the Mach

disc is subsonic so that the location of the disc depends on the pressure

distribution and mixing processes downstream of it. Section 7 will discuss

this portion of the flow field in detail. This is in distinction to the

remainder of the flow which is supersonic and where there is no upstream

influence. This inviscid flow pattern is well understood and several computer
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codes are available (in varying degrees of approximation) to predict it (Ref.

3-1, 3-2).

It is quite informative to investigate the nature of the impingement of

two uniform jets before considering the complete problem of the impingement of

two underexpanded plumes. This flow pattern, outlined schematically in Figure

3-2 is expected to have two shock wave systems. The impingement shock (1) and

the recompression shock R. In the side view the I shock appears basically as

expected from a two dimensional pattern. The impingement shock turns the

oncoming flow parallel to the symmetry plane. A complex process takes place

at the intersection of the plume boundary and the I shock. Based on work by

Hunt and coworkers (Ref. 3-3, 3-4, 3-5) the discontinuous boundary pattern

sketched in Fig. 3-2 is expected. These references deal with normal

impingement of uniform jets; however, the interaction of the I shock and the

plume boundary is locally equivalent to that when viewed in a coordinate

system parallel to the shock/boundary intersection. The flow field is

projected onto a plane perpendicular to the intersection line (Fig. 3-2(b)).

The component of velocity parallel to the intersection line is constant in the

neighborhood of the intersection line because (a) it is parallel to the shock

wave and is hence unaltered by it and (b) is locally parallel to the plume

boundary both upstream and downstream of the impingement shock. The pressure

at points A and D are matched. Downstream of the impingement shock the

pressure at B is greater than at A and therefore greater than at D.

Therefore, an expansion fan emanates from the plume boundary at the point of

impingement to cancel the pressure rise due to the I shock wave (Station 1,

Figure 3-2(a)). The required pressure match downstream of the shock demands
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that at the point of impingement there is at least sonic velocity, relative to

the intersection line, to support a Prandtl Meyer fan. At Station 2, a new

feature develops in the flow-expansion wave fronts stretching in three

dimensions interact with the constant pressure boundary giving rise to inward

moving compression wave surfaces that coalesce to form a recompression (R)

shock system. A schematic of this detail is shown in Fig. 3-2 (c). This

coalescence is completely analogous to the formation of the barrel shock (B)

system in the axisymmetric case. Subsequently, (Station 3-5) the R shock

system shrinks in size and grows in strength as it approaches the plume

center. Another way of viewing the overall impingement process is to consider

that the impingement shock by elevating the pressure of a perfectly matched

- plume creates an underexpanded jet which subsequently expands laterally giving

rise to the shock pattern familiar to underexpanded plumes.

, The flow pattern associated with the impingement of two underexpanded

plumes, in general, contains all three shock systems: the barrel shock, the

impingement shock and the recompression shock. These shock surfaces propagate

across the plume flow fields, interact and give rise to subsequent generations

of shock surfaces. It becomes harder and harder to identify each shock

specifically in succeeding generations. Many shock configurations are

possible depending on the relative strengths of the three systems and the

order in which they intersect. Three observed configurations will be

discussed. Each flow schematic is followed by a corresponding glow photograph

(Ref. 3-6).

In the weakest type interaction (Fig. 3-3) the flow pattern is initially

that of two individual plumes. At distances less than the first Mach discs
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the plumes appear almost as two individual plumes in the top view. The first

Mach cell is only slightly distorted by the I shock (see top view). In the

top view the impingement shock seems to merge with the barrel shock and

deflect so that the Mach discs are not quite normal to the nozzle centerline.

The next major shock pattern occurs downstream of the Mach discs in the

central portion of the flow between the exit of the two nozzles. The R shocks

(side view, Fig. 3-3) from the upper and lower portion of the flow intersect

to form a wedge shaped shock pattern in the flow. The leading edge of this

system is cut off (point a in top view of Figure 3-3) as it is intersected by

the reflected barrel shock downstream of the Mach disc. The small features

adjacent to this central pattern (see top view of glow photograph Figure 3-3)

seems to be created at the intersection of the reflected barrel shock and the

recompression shock at point b shown in the side view of Figure 3-3.

At lower background pressures the initial expansion at the nozzle lip is

greater and the plumes impinge at higher angles increasing the strength of the

impingement shock. Figure 3-4 is an example of a moderate interaction where

the impingement shock strength is increased to the point where it cuts off the

barrel shock system before the formation of the Mach disc associated purely

with the barrel shock. In this case downstream of the B/R intersection (top

view) the R and transmitted B shock intersect in such a way as to create a

normal shock (Mach disc) in the center of the flow. In the strong interaction

case (Fig. 3-5) the impingement shock rapidly traverses the plume and diverts

the B shock sharply toward the symmetry plane. This transmitted B shock

reaches the symmetry plane (top view) at point a while the R shock (side view)

is still out near the plume boundary. As the B shock system reflects from the

3-10



TOP VIEW\MACH DISC-I.

TTOP VIEW

TRACE OF THE INTERSECTION
OF THE BAND I SHOCKS-------------------

B

SIDE VIEW

SIDE VIEW

A) SCHEMATIC B) GLOW PHOTOGRAPHS
2193-0040 .
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symmetry plane a V shaped trace is created in the side view (Fig. 3-5).

Subsequently this reflected B shock intersects with the R shock surfaces

producing an irregularly shaped leading edge because both these shock surfaces

are not planar (Fig. 3-5, station 2).

The three basic flow patterns described most probably represent only a

fraction of the possible flow configurations. There are likely many

variations of these patterns and others not yet observed. For this reason any

computational scheme chosen to pursue solutions of these flow fields cannot be

of the type that is constrained by geometrical and/or topological

limitations. The scheme must allow for a wide variety of geometrical patterns

and must be flexible enough to include as yet unknown and unanticipated

configurations. A computational technique satisfying this constraint is

discussed in the Section 5. The method produces accuracy and maintains

efficiency by incorporating detailed local flow solutions wherever possible.

Thus shock waves and slip surfaces are portrayed as discontinuties which are

tracked individually and locally satisfy the appropriate jump conditions.

There are other three dimensional flow features in these plumes that must

likewise be modelled in the small by their local solutions. Two such

solutions required for the multinozzle plume flow field have not been analyzed

in the past. A discussion of the nature of the lift off of the impingement

shock and the transition of the regular reflection to a Mach reflection

process in the intersection of two three dimensional shock surfaces is

presented in Section 6.
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SECTION 4

RELATIONSHIP OF IR SIGNATURE TO PLUME PROPERTIES

There is a variety of programs which require knowledge of rocket plume

flow fields. Detailed spatial maps of exhaust temperatures, pressures and

chemical species concentrations are required as input in electromagnetic

attenuation codes, aircraft or spacecraft impingement analysis and IR emission

codes for both heat transfer and optical signature evaluations. These

calculations are often so expensive to perform that parametric analysis or

calculation of a large member of data sets is out of reach. For that reason

it is difficult to answer questions pertaining to the variation of plume IR

signature as a result of systematically changing the many input parameters.

Normal system design procedures become extremely costly or have to be

bypassed. The main concern in this section of the study was the effect of

multinozzle plume flow fields on the IR signature of a missile. The results

were presented in detail in Ref. 4-1 and will be reviewed briefly here.

Analytic formulas were derived which relate IR signals to various plume

properties thus alleviating to some extent the problems in parametric

analysis. These relationships point out the allowable errors or uncertainties

in plume models that lead to desired levels of accuracy in overall IR

predictions. It was determined that there are several other processes besides

multinozzle plume impingement that must be properly accounted for if accurate

IR predictions are to be achieved over the entire altitude range . The

analysis is best suited for optically thin plumes, however, as in other

situations the conclusions will probably have a much broader range of

applicability.
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The underlying source term in all optical radiation calculations is the

Planck Black Body Function. The radiant emission from elemental gaseous

sources is proportional to the product of that function and the absorption

coefficient of the IR active molecule. The magnitude of the Planck function

is sensitive to temperature and becomes increasingly so as the temperature

decreases. This sensitivity is qreater the shorter the wavelenqth as shown in

Fiq. 4-1 where the logarithm (base 10) of the Planck function multiplied by X 5

is plotted versus temperature. Temperature sensitivity is graphically

depicted in Fig. 4-2 where the temperature increment necessary to produce an

increase in the Planck function by a ratio of 2.71, 1.65, and 1.28 (e, eI/2,

4 e1/4) is shown for the range 400-2000 K. In Fig. 4-2a, for example, for 2.7

microns at 1000 K, a temperature increment of 100 K produces an increase in

the Planck function by a factor 1.65; at 2000 K, the same increase requires a

temperature increment of 380 K. In fact, the same accuracy at 800 K requires

a temperature accuracy of 60 K. Figures 4-2b and 4-2c show the temperature

sensitivity for shorter and longer wavelengths, and, as before, the decreasing

sensitivity with increasing wavelength is shown. Below the abscissa in Fig.

4-2a there is an approximate altitude corresponding to the temperature axis.

This correspondence is approximate but serves as a reasonable guide. It is

interesting to note that uncertainties, errors in calculation or variations in

any plume parameter that lead to temperature increments have much less of an

effect at low altitudes. Thus a change in temperature at sea level of 400 K

(all other quantities fixed) would only produce a change of the Planck

function by a factor nf 1.65. On the other hand at 50 km altitude there is a

factor of 2.71 for only 150 K variation. This critical temperature dependence
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requires plume models to have very tiqnt controls on the approximations

involved in the prediction of plume temperature levels in order to achieve

accuracy over the entire altitude range.

A variety of processes control the temperature levels in the plume

gases; expansion to background pressure, turbulent mixing of the exhaust and

ambient gases, and afterburning chemistry in the mixing between the exhaust

gas and ambient stream. The mixing process is of direct concern because it:

adds a temperature increment due to viscous dissipation and controls the

geometric size of the radiating region. At low altitudes, an equally

important contribution to the radiation levels is the afterburning chemistry,

which not only adds a temperature increment, but can also be responsible for

the consumption or production of a radiating species. The influence of both

mixing and afterburning has been the target of other studies and will not be

focussed on here. The inviscid expansion process of the exhaust gas to the

ambient pressure levels becomes more and more significant as altitude

increases. There are two principle processes that cause major changes to the

temperature that would be achieved via an isentropic inviscid expansion from

the nozzle exit to the background pressure. The primary deviation is due to

shock waves in the plume flow which cause large entropy increases that persist

into the plume far field. These shock waves result from the adjustment of the

underexpanded nozzle flow to the local pressure of the surrounding fluid ano

the impingement of individual exhaust plumes on each other in the case where

the vehicle has more than a single engine. The former case is well understood

because it is an axisymmetric flow, while the latter is a complex

three-dimensional flow that was the object of this research program.
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In order to properly account for large pressure ratio expansions in

multinozzle plumes all flow processes beyond shock heating that influence the

temperature field should be examined. The role of nonideal thermodynamic

properties of the fluid in the inviscid expansion has to be properly addressed

in any plume model. The temperature difference between ideal and nonideal

expansion increases with overall pressure ratio and hence altitude. The

-nonideal expansion process reduces the plume core temperature and therefore

further compounds temperature sensitivity. Two common assumptions that must

be reviewed are: (1) the exhaust medium is calorically perfect and (2) the

exhaust composition is frozen. Exhaust gases can contain substantial mole

fractions of water vapor and/or carbon dioxide that exhibit chanqing values of

specific heat over the entire temperature range (500-2000 K). Other triatomic

molecules can exhibit similar specific heat temperature dependence over these

temperature ranges. This results in a substantial temperature decrease due to

the difference between a frozen composition and the more widely employed

2orstant ' expansion. In addition all finite rate Themical -eactions cannot :e

considered frozen. Thus changinq composition must be examined.

Assessment of the qross effects of multiple nozzle self imDinqement an(i

the real gas expansion process on the plume IR signature was achieved v'a an

analytic analysis derived and described in detail ,n Ref. 4-',. 'he analyses

is For optically thin conditions and as such does not account for self

absorption of the outer cooler regions of the olume. The mathematical

analysis for the far field is based on standard methods which take advantaqe
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of the exponential nature of the Planck function. The results of the analysis

was tested against computer generated plume signatures. Two model plumes were

generated and the resulting station radiation was computed using GRUMPLUME

(Ref 4-2). These results were used to show that the computed station

radiation was proportional to the derived formulas.

A schematic of the model plume flow field is shown in Fig. 4-3. The near

field multinozzle impingement and the subsequent expansion to ambient pressure

are assumed to have taken place upstream. The model studied here is a far

field model and does not address the emission from the regions near the exit

plane. The initial impingement region is highly nonuniform and requires a

much more complex formulation that would not be expected to yield simple

relationships. Two plumes were investigated corresponding to altitudes of 50

and 60 km with start line temperatures of 383 K and 745 K resoectively and

water vapor mole fractions of .33 and .32. The computed centerline

properties from GRUMPLUME are shown in Fig. 4-4.

The station radiation predicted for these two test cases is shown

plotted in a normalized form in Fig. 4-5. The striking feature of the result

is that in the initial region of the far field the station radiation is a

linear function of distance. The results of the analysis are as follows. :r

the initial region of the far field the initial value of the station radiatoon

at z = 0 is proportional to the product of the Z!anck function at tne
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initial temperature and the initial value of the mole fraction of water vapor

(the radiating species) . This formula correlated the results very well as

shown in the table below.

jz(O) J (0 )

h 1 J (H) __ __ )_ __

X H 0 x(0) 

50 2.678 3390

60 .828 3310

(all units arbitrary)

The result is only strictly applicable for the distribution given by the model

plume. In a more accurate fluid dynamic model of the plume the initial

temperature profile would not be constant resulting in a more complex

relationship. In the plume far field, where the centerline temperature and

species mole fraction of water vapor decay both axially and radially the

results are (see Ref. 4-1 for details of the derivation)

z C xH ?O ) NA0 (T ) pT%/(d 2 T/dr 2)

The station radiation is proportional to the product of mole fraction of

radiating species, Planck function, static pressure and temperature and

divided by the secono derivative of temperature all evaluated at centerline

conditions. The validity of this correlation is demonstrated in Fig. 4-6

Where the entire series of points in the far field of both plumes are plotted

versus centerline temperature. All the points fall within approximately 5% of

the value 1.45.
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Two plumes are sketched in Fig. 4-7: a single engine axisymmetric plume

and a multiple engine three-dimensional plume. The shock heatinq in the

axisymmetric case gives rise to a very highly peaked temperature profile

because the initial shock strength is weak and increases rapidly as it nears

the axis. The fraction of plume mass flow the shock intercepts when it is

strong is quite low because the streamlines are continuously diverging from

the axis in the plume core. in the multiple engine case, a strong shock

caused by the plume impingement intercepts a large fraction of the exhaust

flow near the exit plane. Therefore, the temperature profile downstream will

have a flat shape and a larger fraction of the exhaust mass flow will be

heated to high temperatures. In the analysis presented the effect of

percentage mass flow affected by shock heating was not explicitly addressed,

however, the station radiatiom will be proportional to that percentage. In

the previous discussions it has been established that the station radiation is

directly proportional to the Planck function based on the peak temperature.

Figure 4-8 demonstrates what can be expected to be the variation of Planck

function due to shock heating. The ordinate is the ratio of Planck function

at shock heated temperature to Planck function at the isentropic expansion

temperature. The abscissa is the isentrooic temperature achieved by an

expansion from 2000 K. below this is an additional scale showing the

corresponding altitude. Figure 4-8 includes a series of curves for an entire

range of total pressure losses. The greater the total pressure loss the

higher the temperature and hence the higher the ordinate. Notice the size of
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a factor of 2 shown on the chart. It is clear from this chart that multiple

nozzle impingement effects become progressively more influential as altitude

increases. At low altitidues, below say 10-20 km, the individual plumes

interact only weakly so that there is little additional shock heating

developed and Fig. 4-8 shows that shock heating has diminishing influence at

those altitudes in any case.

The sensitivity of the Planck function to temperature variations

requires tight controls on all processes both numerical and physical that lead

to error beyond the shock heating caused by multiple nozzle self impingement.

There are a variety of considerations that are discussed in some detail in

Ref. 4-1. To complete the discussion in this section the role of nonideal

thermochemical properties will be examined. In Fig. 4-9 the temperature

achieved by expansion of a typical exhaust gas composition to ambient pressure

is plotted. Three isentropic expansions are shown. Two are for ideal gases

withV= 1.22 and Y = 1.3 (y is the isentropic exponent C p/Cv ) and one for

frozen composition. The nozzle exit plane value of Y is 1.22. It is evident

from Fig. 4-9 that above an altitude of about 20 km the assumption of a

constant value of V will overpredict exhaust gas temperatures. The frozen

composition expansion passes smoothly between the bounds provided by the two

constant Y expansions. The frozen chemical composition expansion process is,

therefore, a more desirable feature to employ in an accurate plume model. The

accuracy of the frozen expansion process must be examined in the light of the
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fact that chemical reactions do not necessarily freeze out even at higher

altitudes. Figure 4-10 (Ref. 4-1) displays the Damkohler number as a function

of altitude for the reaction set shown. Reactions 4, 5, 6, 9 can still be

active at the high end of the altitude range. The possible shuffling of

chemical species by these four reactions must be examined to determine if they

can substantially alter the temperatures achieved by the frozen expansion.

A

I

'4-



Table I Typical Reaction Set For Amine Fuel Exhaust

kR - AR exp (BR/RT) / TN

R AR N BR

1 0 + 0 . M =02 +- M 1.000E.29 1.0 0.0
2 0 -H * M -OH , M 1.000E-29 1.0 0.0
3 H -OH - M H20 - IM 2.000E-28 1.0 0.0
4 OH - OH = H20 + 0 1.000E-11 0.0 -1000.0
5 OH H2 = H20 + H 4.000E.11 0.0 5500.0
6 0 - H2 - OH * H 3.000E.11 0.0 -8200.0
7 H " 02 - OH + 0 3.000E-10 0.0 -16500.0
8 CO - M C02 + H 5.000E-29 1.0 -4000.0
9 CO + OH . C02 + H 5.000E.13 0.0 -600.0

10 H + H +M -H2 + M 5.000E-29 1.0 0.0
11 C02 + 0 = CO 02 3.200E-09 0.0 .54200.0
12 H2 + 02 = OH + OH 1.600E-10 0.0 -70400.0
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Fig. 4-10 Damkohler Number for Reaction
Set as a Function of Altitude
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SECTION 5

NUMERICAL CALCULATION PROCEDURE

The variety of possible structures of the multiple nozzle olume

impingement flow field requires that the computational procedure employed in

their analysis be as independent of geometry as possible. The code must allow

for a wide variety of shock configurations and have the flexibility to allow

for as yet unknown additional geometries. For this reason the "floating

discrete shock fitting" approach originally devised by Moretti was chosen

(Reference 5-1, 5-2). A two dimensional version of this method was employed

successfully by Salas (Reference 5-3) for a complex two dimensional scramjet

flow field containing many shock waves. For the present problem these methods

were generalized to compute three dimensional steady inviscid flow. Three

types of mesh points are recognized: interior, boundary and discontinui-y. The

computational mesh is a fixed Cartesian grid where the shock surfaces and

pressure boundaries propagate freely across the grid. The shock and pressure

boundary surfaces are portrayed as discontinuity surfaces and, for example,

the complex impingement shock/boundary interaction is modelled in detail as a

point singularity.

The discontinuity surfaces are considered on a cell by cell basis so that

the computer code must contain the necessary logic to perform the correct

calculations in all possible cases. Because the cross angle of the

discontinuity surfaces must be determined to compute propagation velocity the

discontinuity cells must be connected. Thus the computations necessary for

each discontinuity cell cannot be done independent of properties in

neighboring cells. The number of possible configurations is large but

manageable for single snock surfaces because it is possible to devise rules to

cover a large portion of the possibilities and to identify and code for the
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exceptions. When two shock surfaces intersect, :he geometric oossiDi'ities

and hence comolexity increases enormously witn the attendant 'ncreases 41

program logic. The marching step size is restricted to ia'ntain the same

configuration of discontinuity cells for each step. At the end of eacn step,

if any of the discontinuities has reached a mesh point, it is crossed to the

other side and all the necessary indicators wnich guide the program logic are

reset to account for the new configuration.

The exhaust gas is considered inviscid, thermally and calorically perfect

and is governed by the three dimensional Euler equations. in Cartesian

coordinates, the conservation of mass, momentum and entropy are

Vy '4z + ' (UP x  VPy + wPz )  0 (5-.1)

uu x + vuy wuz + TPx = a :5-1.2)

Uvx  VVy wv z + TPy : 0 (5-1.3

uWx + VWy + wwz + TPz  0 (5I. )

uSx + VSy + WS: 0 (5-1.5)

where u, v, w are the Cartesian velocity components in the x, y, z directions

and P is the natural logarithm of the pressure, S the entropy, T the

temperature, V the ratio of specific heats and all thermodynamic Quantities

are non dimensionalized by the stagnation conditions (e.g., o., PITo ,,

the velocity components with respect to the quantityv7 and the

coordinates by the nozzle exit radius. The marching (time like) jirection is

the z direction and the following two flow angles are introduced



r = j,w

,) Oa' 
=

l l '0 ' o '4v jm - -v i .

livde the results v -=o get

CrT , r - -

Similarly an eauaton or a s, ,er'ed om :'s. -I.

rto 7 7. w- - : = -.-.

Subtract Eq. (5-1.41 from E:. !5-1.11 t'nes 4 ind -'vi,.e the ^esu' :v : 2

to get

r+ .. <( o -+P + 2 $-TvwP' = '-. '
x x :

Divide Eq. (5-1.5) by w to qet
rs + S + S = 0-

S y z

Equations (5-2.1 - 5-2.4) form a set of four eauations :or --e 'our or'-nari

unknowns r, ',a and S. The remainder of tne ",ow Ouanti:es ar? -e- ieo

from the following subsidiary equations. Emlcy- no tne :onservat'on 'f

stagnation enthaloy the equation for w (the axial ielocity

v, '-:) (i+r2 2 )  --.

The equation of state for 7

T = exp (((/- )P + S)/'Y) -.

The definitions (5-1.6) and (,5-1.7) for j, v

U rw -

V = OW
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ne i ntar' )r ooi ritS ire -a',:uIdted oy :ne i nte'gration of Zos. ',52 * 5-2.4'
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Forward Differences

x airection -FX(V) =
Ax

y direction DFY(V) V v( '- v
Ay

Backward Differences

x direction OBX(V) V(2) -=1.-:)
Ax

VJ(J) - V(J-R)
y direction ,BY(V) =

ay

where '1 is any flow quantity and the equations define the symbols F(, F v ,

DBX and OBY. Combinations of forord and backward differences for ti-e x and y

directions is permitted in the predictor step so long as it is -eversed in

corrector step. If backward differences are emoloyed for both x and y in the

oredictor steo and forward differences in the corrector steo the new ialues at

Z + AZ at point J deoend only on tne seven mesh points bounding the two

shaded cells in Fig. 5-2. If there is a discontinuity, a shoc< save for

example, in either of these shaded cells, then the computation .t Doint J must

be modified to account for it. The orientation of this 'finite difference

olecule" dictates a computational logic in terms of defining how mesh ooints

are affected by discontinuity cells.

Figure 5-3 shows a tyoical computational mesh denoting the mesh

numbering system and snowing a single continuous shock or discontinu,'v
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surface. Three types of points are indicated on the figure: interior Doints,

boundary points and discontinuity points. 3ouncary ocints are those inter 4or

Points associated with a finite difference molecule isee -ig. 5-2'1, vcn 1av e

a discontinuity passing through it and so cannot be comoutec emloyi.ng tne

standard interior point calculation scheme. The steps involvea in one

computational step are outlined in Fig. 5-4. The necessity for step _ is to

maintain the overall configuration, that is, all interior oints rema.n

interior ooints, boundary points remain boundary points or 0oth the predictor

and corrector portions of the calculation.

In step 4 (Figure 5-4), the computation of the oroperties at the

discontinuity and boundary points of each cell containing a discontinuity is

considered individually. The discontinuity surfaces are considered to oe

oriented so as to reccgnize the high and low pressure sides, The projection

of the discontinuity surfaces on the transverse or computaLional plane results

in a continuous line (cf., Figure 5-3). If this line is followed from a

prescribed starting point, for each cell, the discontinuity can enter on any

one of four faces and leave on any of the remaining three faces - giving a

total of twelve possible configurations shown in Fig. 5-5, :i the computer

program, for each discontinuity cell, the properties at the discontinuity

point which is the entry point to the cell are associated with that cell. -or

each of the twelve Possible configurations for tne 'iscontlnu'.y cei s tne

computer code contains the necessary loqc to .e!ermirne 4h'cn mesh joints are

boundary points and which discontnut. ,o-; nts are t n ne -aI uateo. 4t any

step the code contains a tab e of tie -.c.ontnui v -e s ,' tine .Iroara

logic determines tne method )f :d'.!ator - r -C, * 'e n;n Own joints. -

typical axamoe of a 1iiscont.,ru1 */e ' ; ;.' ' - u-e :-n. 3nc<

-AP
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Fig. 5-4 Flow Diagram for One Step Using Floating Discontinuity
Finite Difference Computer Program
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Fig. 5-5 The Twelve Discontinuity Call Configurations
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enters from the bottom face of the cell and leaves through the too face. To

the right of the shock the flow is known (i.e. undisturted free stream or

*ndisturoed plume). The code logic determines, for this configuration, tnat

the two points to be calculated associated with the j cell are mesh point J

and shock point Sj. The unknowns at Sj are the values of r, a, P and S

on the high pressure side of the shock and the shock point velocity dfj/dz

where fi is the fractional distance of Sj from J (see Fig. 5-6).

The shock configuration shown in Figure 5-6 is the simplest

possible. Each of the discontinuity cells is a type 1 as defined in Figure

5-5. The computation of the shock cross flow anqle is computed by locating

the shock points on either side of the point of interest. This is achieved by

looking ahead and behind the discontinuity cell j and locating the snocK

points in cell j-R and j+R. In this case, the location of the shock point in

j+R (j-R) is at y =a y (y = -dy) and x z fjIRAX (x = fj.Ax) (x, y

both measured relative to the mesh Point J). In other configurations where

cell j-R is type 4 or type 11 (see figure 5-5) the computation of the

location of the oreceeding shock point follows a different formula. Likewise

for the following point. In the configuration shown, the oloint J is a

boundary point and must De calculated accordingly, For each triplet of tyoes

of discontinuity points (in Fiqure 5-6 this is a 1-1-1) a loqic pattern is

designed ',o compute the shock cross angle correctly and to determine wnich

point is a boundary point.

The calculation procedure used for discontinuity Points and

boundary points is outlined below for a two dimensional flow-the extension )f

these netnods to tnree dimensions is stra'ght forward qeometrica1l y out

reouires some analysis oerinent to tnree dimensional characte-istl: t!heorv

II5-i~2
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and will be discussed in subsequent oaragraphs. Three ideas must oe developea

in order to explain this procedure: (1) computation of characteristic

relationships using finite difference algorithms (2) slant marching steps and

(3) pseudo point values. Points A, 3 and C form the finite difference

molecule for the computation of the values at point N in a two dimensional

MacCormack finite difference scheme (Fig. 5-7). (Note that the intermediate

values employed in the predictor/corrector scheme are only notational

simplifications and that only values of properties at A, B and C are employed

in the computation of N.) The object here is to show how the values computed

by the finite difference calculation can be used to compute the characteristic

relationships at N without the need for interpolating the values at the

points denoted + and - which are at the foot of the characteristics (Figure

5-7). Denote the velues at N computed by a second order finite difference

scheme to be uFD, wFD, PFD, SF9 from which FD (v is the Prandtl

Meyer angle) can be computed. The two characteristic relationships associated

with point N (second order accurate) are

downward wave AO+A = r7 z ( r :( F FN

upward wave ae-Av "F+6z N
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Fig. 5-7 Finite Difference Molecule for Two Dimensional Flow
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Where F is the inhomogeneous or forcing term containing velocity

gradients out of the plane (c.f. Ref. 5-5 for derivation of these

equations). Employing the notation of Fig. 5-7, these relationshios ; ecome

N rAz +99

In the straightforward application of the metnod of haracteristics, these two

equations are employed to solve for the two jnkncwn, ; and I This
N

requires the interpolation of data to determine 9- and r 3ecause

the finite difference result ana the characterist'c -esu t iust :e the same to

second order
--

ON - 'N T 1 tan - " -

Thus, the simole result at point N for the two characteristic relationship is

N 'N = tan -  'J'/"D'

N 'N = tan- u/wlD) -

which does not require any interoolation or any scheme other than the

orcinary finite difference algorithm used at any interior ooint.
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Figure 5-8 shows that (for the discontinuity point) the new values

desired at z + Az do not lie on the same value of x as point B, rather the

point N is elevated by Ax. The computation of this point is made simply by

forming a directional derivative from the governing equations. For any

system of partial differential equations

au_ A + Baz a+B

where A and B are the matrices appropriate to the equations of interest and U

is the unknown vector. To compute the values at point N use the system

dU au x A U+,, d-' =  a z = A + I + B

dz z a z (A x

where I is the identity matrix and dU/dz is now the derivative used to comoute

point N from point B in Fig. 5-8 by a "slanted step." The finite difference

scheme is applied to the right hand side of this equation using exactly the

same rules as are used at any interior point resulting in a second order

accurate predication at N.

The final ingredient necessary for the boundary point calculation is

the pseudo or projected point. Figure 5-9a shows the typical configuration

encountered in the "shock between the mesh points" type calculation. In

general at station z the required properties are known at mesh points A and B

and on the high pressure side of S the shock point. These ooi nts do not form

the standard equally spaced finite difference molecule. In order to use the

same algorithm that is used at all other mesh points, the finite difference

molecule shown in Fig. 5-9b is constructed. The values of the flow variables

at the point P are calculated by a simple linear extrapolation from the values

5-16
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Fig. 5-9 Pseudo Point Construction
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at A and S. The value at B is not used. This technique has the critical

oroperty that for geometries where point S is very close to oint 3 truncation

errors are not amplified in creatinq the value at P. This molecule can .e

shown to produce a first order rendition of the distribution of flow

properties on the mesh segment ABS. However, a simple comparison between the

Taylor series expansions employing properties at A, S and S with one employinq

A, B and P shows that the error involved is, in the worse case,

(1/8) ( 2f/ ax2 )h2 (f being any flow property). Thus reasonably small

errors are expected from this approximation.

The sequence of steps for calculating a typical boundary and shock point

(the flow upstream of the shock is known in this case) are ds follows (refer

to Fig. 5-10): (1) the shock location at z+ jz (SN) is estimated based on the

known shock slope at S; (2) the flow variables at point P are computed: (2)

the finite difference molecule ASP is employed to compute the values at point

N using the standard MacCormack scheme; (4) the slant step and same procedure

is used to compute the finite difference values of the new variables at SN;(5)

these new values are combined to yield a single characteristic equation -

this case
S SNj =  t a n -  ( ' -

N WFD t FD;

(6) the Rankine-Hugoniot equations and two estimates of the shock slope at. SN

are used to calculate two solutions for the conditions behind the shock at SN:

(7) assume linear variation between these two solutions to derive a linear

equation

S-N aN:

.13
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Fig. 5-10 Mesh Configuration for Floating Shock Calculation
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for properties behind the shock; (8) solve the two equations from step (7) ana

step (5) for the shock properties at SN. The accuracy of the scheme is

further enhanced by correcting the location of the shock at SN based on an

average slope between S and SN and repeating the sequence 1-8 above.

The discontinuity point calculation procedure for three dimensional flow

requires additional analysis. The procedure presented for two dimensional

flow takes full advantage of supersonic flow theory. This theory provides a

direct relationship between the geometric flow angle a and the Prandtl Meyer

angle along characteristic lines. In three dimensional flow, there is no

simple direct relationship between flow orientation and Prandtl-Meyer angle.

The flow direction at any point is described by two angles, Tand o for

example, and is not unique. In the past investigators (Refs. 5-6, 7, 8,9) have

employed "reference plane" characteristics to overcome this complication. ir

this method, a plane is prescribed a priori which is oriented in a direction

convenient to the calculation. That is, the direction chosen simplifies

program logic and reduces the need for interpolation to a minimum. The

components of the velocity vector in these planes are treated as two

dimensional flows and are evaluated based on a method of characteristics

analysis in the reference plane. Velocity components out of the reference

plane are computed by an auxiliary equation - usually the transverse momentum

eauation. Velocity gradients and the transverse velocity comoonent; appear in

the inhomogeneous or forcing term in the reference plane characterist'c

equations. In the present calculation procedure, a new method is described.

,t is based (n a theoretical analysis which demonstrates that there are in

fact distinguished planes, in a local sense, in which the flow is described by

eauations in two space dimensions.

5-W0
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I.

:n three dimensional supersonic flow, the zone of dependence of a point

in the flow is the upstream Mach cone. Each generator of this cone is a

oicnaracteristic. It was demonstrated in Ref. 5-10 that two of the infinite

number of bicharacteristics on this Mach cone play exactly the same role as do

the two characteristics in axisymmetric flow. These bicharacteristics are

along the intersection of the Mach cone and the osculating plane of the

streamline Figure 5-11. The osculating plane contains the tangent vector

and principal normal to the streamline. The normal to this plane is in the

binormal (or b) direction. There are no velocity components normal to the

osculating plane. In fact the equations of motion normal to this plane reduce

to ap/b = 0 (p is the static pressure and b is the coordinate in the binormal

direction). In the osculating plane there is the familiar relationship

between changes in flow angle and changes in Prandtl Meyer angle that exists

for axisymmetric flow. Only the gradient in the b direction of velocity

component in the b direction appears in the equations. The entire

computational r,-heme devised for the discontinuity point calculation for two

dimensional (or axisymmetric) flows can be employed in the three dimensional

flow in the osculating plane. In general the binormal direction is given by

b =,7p x q (q is -he local velocity vector, b is a vector pdrailel to the Jni,

vector b'. This formula is based on the properties that the b vector

be normal to both the tangent vector and acceleration vector of a fluid

element. 7 is tangent to the streamline and vp is parallel to the

acceleration vector. Thus the orientation of the/ vector or alternatively

the orientation of the osculating plane are determined alonq with the

so I ut ion.
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To demonstrate the use of this theory the three dimensional shock point

calculation is outlined oelow. Figure 5-12 shows a schematic of the shock

point calculation. All 'low oroperties are known at station z including the

shock veloci'/ n , e / iirec:ion. The procedure follows exactly the steps

outlineg in 'tie ,,- 'iensional calculation described in the previous

oaragraons qi'in *ne "ol'owing additions. The shock position at all points at

z - Az are :omou ed as 3 First estimate by simple forward inteqration. Thus

YSN = 'IS + $dYS, dz'.z

where YSN (YS) is the value of the shock height at z + Az (z) on the vertical

grid line through mesh point B (N) and dYS/dz is the shock velocity in the y

direction at station z on the same grid line. After computing the new location

of the shock on each mesh line the shock cross flow angle can be determined by

a simple centered difference of the locations at SN + and SN - (see Fig.

5-12). The only unknown parameter for the shock geometry at point SN is

dYSN/dz or the shock speed at station z + Az. As in the two dimensional case

(step 6) two values are assumed for the shock speed. In the 3D case the two

velocity vectors associated with these two assumed shock normals are used to

define the/ direction (Fig. 5-13). The remainder of the calculation

procedure is identical with the 2D procedure. It is not clear that tn~s is

only method for computing the vector. The method is linked to the way the

shock cross anqle is computed. This is nonunique Iand the influence of

variations of this step on calculated results should be studied. The method

presented is self consistent and achieves accurate and reliable results when

combined with the rest of the computational procedure.
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A computation employing the three dimensional floating discontinuity

program was achieved for the flow field created by the impingement of two

uniform rectangular jets. This geometry was chosen so as to minimize the

complexity brought about by nonuniformities in the underexpanded plume. The

geometry describing the initial calculation is shown in Fig. 5-14. Two

uniform Mach 3.0 plumes of rectangular cross section impinge at 30'.

Impingement shocks spread across the plumes (top view) to make the two flows

parallel. This results in pressure above the background, and the flow spreads

laterally (side view) to relieve this overpressure. The cross-section shown in

Fig. 5-14 is characteristic of the calculated results. The impingement shocks

are slightly curved and are bounded by the free jet boundary. The pressure

* ,boundaries spread laterally in a vee shaped pattern. A typical cross section

from the calculation is shown in Fig. 5-15. (Only one fourth of the total

cross section is shown because the flow has bilateral symmetry). The flow

from the undisturbed plume passes downward through the impingement shock and

jumps in pressure. The impingement shock intersects the undisturbed plume

boundary in a complex interaction involving a sonic shock condition and a

sonic shock condition and a centered Prandtl Meyer fan with the combined

result of no pressure change along the pressure boundary. Figure 5-16 is a

schematic of the flow near that point. The flow is decomposed into comDonents

tangential and normal to the shock wave/plume boundary intersection line.

(see Section 6 of this paper for detailed discussions relating to this type of

analysis), In the plane normal to the intersection line the shock wave is

sonic at the point of impingement. Attached to the imoingement point is a

centered expansion which reduces the pressure back to ambient. The

5-26
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fundamental unknown in the calculation of this point is the speed of the

impingement point. The calculation procedure is similar to ordinary shock

points. Flow properties behind the impingement shock are matched to the

interior flow by a characteristic relationship in a local osculating plane.

This procedure is an approximation and must be examined in the light of the

more accurate flow solutions that are discussed in Section 6.

The isobars for the cross section in Fig. 5-15 show that the flow has

nearly the undisturbed two dimensional impingement shock value at the

centerline (see Fig. 5-17). The decay to background pressure takes place

across the entire flow and is most rapid in the vicinity of the shock/boundary

intersection point. Figure 5-17 shows the symmetry plane pressure profile and

the cross sectional view z = 2.12 (the plume half width is unity). There is a

region of near constant pressure developing at the outer fringes of the

pressure boundary as would be expected. There are some "wiggles" in the

pressure in this zone that are most probably due to the low number of mesh

points used in the calculation (Fig. 5-15 shows the exact mesh employed).

Figure 5-18 (a) shows the calculated development of the cross sections for the

impingement region as a function of distance downstream of the impingement

line. Each profile is ten calculation steps from the previous; the first

being at Step 10. The pressure boundary develops into a pointed shape.

Figure 5-18 (b) shows the flow profiles superimposed on the computational

iesh. The impingement shock, pressure boundary and interaction cell have

crossed many mesh points and have attained a variety of configurations with no

apparent breakdown of the scheme. An interestina comparison is made in Fig.

5-19 with calculations reported in Ref. 5-11. The calculations are for the
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plume boundary of a scramjet exhaust employing a shock capturino technique.

The splitter plate produces impingement shocks similar in qeometry t) those in

the present calculation. The comparison which is meant to be qualitative, is

quite striking in that even the irregular shape of the boundary is reproduced.

This gives some confidence in the present results, however, further comparison

with other three dimensional flow calculations would be useful.
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SECTION 6

THREE DIMENSIONAL PHENOMENA

.n Section 3 the flow pattern of two underexoanded interactinq rocket

plumes was discussed and the general features of the possible flow fields were

pointed out. In this section the intersection of two three dimensional shock

surfaces and the impingement shock liftoff will be analyzed. These features

have no counterparts in two dimensional supersonic flow. In both situations

there is an abrupt change in configuration because attached shock solutions

are no longer viable. The configurational change takes place through a

conical solution centered at the transition point. Detailed understanding of

the nature of these transitions and the ability to compute them accurately is

required in the subject problem. Many other three dimensional supersonic flows

of current interest require understanding of tne shock intersection oroblem

and other three dimensional features which are peculiar to those problems.

These transition problems are generally complex. The shock wave pattern

formed by two intersecting wedges is an example of a similar conical f2ow that

is less complex than the two transitions being considered. The computation of

the "corner flow" problem has been the subject of research for many years and

is the subject of several papers (Refs 6-1 to 6-3) and was recently the

subject of a Ph.D. thesis (Ref. 6-4)).

The intersection process that occurs between two three dimensional shOCK

surfaces will be discussed first . A single three dimensional shock surface

has a certain amount of arbitrariness in its description that does not exist

in the two dimensional counterpart. In both cases, the jump conditions for
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the thermodynamic state variables can be reduced to the one dimensional

Rankine-Hugoniot relationships employing the Mach number normal to the shock

wave (defined by velocity component normal to the wave and the undisturbed

sound speed). The tangential component of the oncoming velocity vector is

unchanged by the shock wave. In two dimensions, this leads to an unambiguous

relationship between pressure ratio and flow deflection across a shock wave

and the definition of a shock polar. In three dimensions, it is possible to

arbitrarily decompose the tangential velocity vector into two components in

the surface of the wave. One of these components can be combined with the

normal velocity component to form a velocity vector oblique to the wave. The

jump condition, for the thermodynamic variables, can be determined by the

corresponding two dimensional oblique shock relationships. The velocity

downstream of the shock surface is found by adding to the oblique shock

solution the remaining component of tangential velocity (which is unchanged by

the wave). Because the decomposition of the tangential velocity vector is

arbitrary, a three dimensional shock wave surface can be described by an

infinity of two dimensional oblique shocks with an additional tangential

velocity component. For a given surface normal vector to the shock the

downstream result is always identical.

The intersection of two shock waves in three dimensional flow takes place

along an intersection line whereas the two-dimensional counterpart takes place

at a point. The properties of the interaction depend not only on the shock

strengths but also the local orientation of the intersection line. When the

flow is supersonic downstream of the interaction the intersection line is at

the leading edge of the transmitted and reflected waves. The transmitted and
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reflected waves originate at the intersection line in the same manner the

attached shock surfaces originate at the leadinq edges of swept wings in

supersonic flow. Thus the sweep of the intersection line plays a strong role

in the interaction. Because a three dimensional shock surface can cause flow

deflection in any azimuthal direction it cannot be simply described as a first

(upward deflection) or a second (downward deflection) "family" shock as a two

dimensional shock can. in two dimensional flows the intersection of two shock

waves can be categorized according to whether both shocks are of the same or

opposite family. In either case there are a variety of shock configurations

that can result and the subject is an established segment of supersonic flow

theory (see, for example, Refs. 6-5,6). While a three dimensional shock

cannot be described simply as belonging to one of two families, the

interaction process of two shock surfaces can still be categorized in this

manner. At a point along the intersection line each of the two waves can

rotate the flow in the same direction or in opposite directions relative to an

imaginary axle parallel to the intersection line. Thus, the simple

classification employed in the two dimensional theory can be employed locally

for three dimensional shock surfaces.

In the following discussion the evolution of a three dimensional

shock/shock interaction process is elucidated by considering the model problem

of a circular conical shock intersecting a planar shock surface. This model

problem has the highly desirable feature of constant shock strengths (in terms

of pressure ratios) at all points along the geometric intersection line which

is a true hyperbola. The case considered here has a regular reflection

process at the leading edge of the intersection line. When viewed alonq the
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intersection line, the initial interaction is locally that of two same family

shock waves intersecting and there is a simple transmitted and reflected wave

pattern. Downstream of the leading edge the sweep angle of the intersection

line increases, giving rise to decreasing apparent normal M,.ach numbers and

increasing apparent deflection angles so that at some point the simple regular

reflection process is no longer possible. A detailed discussion of the

reasons for this is given employing the shock polar diagrams in the

pressure/deflection plane. A Mach (or irregular) reflection process develops

in which an additional shock segment bridges the span between the two incoming

waves. This shock segment moves ahead of the geometrical intersection of the

two incoming waves and there are now two shock triple points characterizing

the intersection. The cross flow behind this additional shock segment is

subsonic relative to the triple points and is analogous to the Mach reflection

that develops in the three dimensional compression corner flow field. The

propagation of an irregular reflection pattern thus involves the intersection

of three shock surfaces - the two incident waves and the Mach reflection wave

which is generated by the intersection.

The complex nature of the intersection of shock wave surfaces in three

dimensional flows can be illuminated by considering the model flow

configuration shown in Fig. 6-1. A thin wedge in a supersonic stream produces

a supersonic oblique planar shock surface and a uniform flow parallel to the

wedge. A cone is aligned with this flow giving rise to a conical shock

surface. The conical shock and the planar shock intersect along a hyperbolic

line in the plane of the oblique shock (Fig. 6-1(b)). In cross-sectional

view, the circular conical shock intersects the planar oblique shock at two
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points. The wave system that joins these two points can be characterized as

either a simple transmitted and reflected wave system (regular) or a more

complex system containing the equivalent of a Mach reflection (irregular).

These are shown on the right hand side and left hand side of Fig. 6-1(c)

respectively. The pattern that prevails (regular or irregular) depends on the

location along the intersection. Initially, the sweep angle is zero and the

interaction is regular (for the cases considered here with supersonic

downstream velocity). Downstream, as the sweep angle increases, a transition

occurs and the shock pattern becomes irregular. In the regular reflection a

local two dimensional flow analysis centered on the intersection line can be

employed to determine the local solution. There is a simple transmitted and

reflected wave and contact surface that leaves the point of intersection

(right-hand side of Fig. 6-1(c). The cross Flow relative to the intersection

line behind the reflected/transmitted waves is supersonic. Therefore, the

intersection line can be viewed as the leading edge of these shocks and the

solution is independent of downstream properties . In the Mach (irregular)

reflection case, the resulting shock system is actually ahead of the

geometrical intersection of the cone and wedge shocks (left hand side of Fig.

6-1(c). There are now two shock triple points, and the cross flow is, in

general, subsonic; thus, flow properties from the high pressure side determine

the propagation velocity.

In the case of the regular reflection (shown schematically in Fig. 6-2,

the solution is arrived at by decomposing the free stream velocity into the

components normal and tangential to the intersection line. The tangential

component of velocity is parallel to all the wave surfaces by virtue of the
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geometry of the intersection. Figure 6-3 details a point along the

intersection line showing the two incoming waves and the transmitted and

reflected wave surfaces. In the plane containing the normal component of

velocity (Fig. 6-4), the flow pattern is identical to that of the

two-dimensional flow containing the intersection of two shock waves of the

same family. The incident shock waves are known in strength and do not

interact until they intersect (the flow behind them is supersonic). The

solution for the transmitted and reflected wave strength is achieved by

determining the deflection of the contact surface 83 (Fig. 6-4) to match the

pressures in regions (3) and (4) behind the transmitted and reflected waves,

respectively. This can be achieved by a simple iteration procedure. The

process is best understood by studying the flow process in the pressure/flow

deflection hodograph plane (Fig. 6-5). Each point on curve I, the shock polar

associated with the upstream velocity (the velocity component normal to the

intersection line in the three-dimensional case) corresponds to conditions on

the high pressure side of the shock wave. The entire polar corresponds to all

shock wave angles ranging from the local Mach angle to a normal shock (for

both positive and negative deflections). The pressure in zone (1) is

determined simply by moving to the deflection 81, on the abscissa. For the

Mach number of the flow, in zone (1) a shock polar, curve II, can be

constructed at point (1), and the pressure at (2) is determined corresponding

to the deflection 82. The shock polar at point (2), curve III completes

the solution. Polars I and III intersect at a point which is denoted as point

(3) along polar I and (4) along Ill. Points (3) and (4) are coincident in the

pressure/deflection plane but represent different velocities and entropy (or
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density). 3y the nature of the construction, point (3/4) is at the desired

condition which brings the flow behind the transmitted and reflected waves to

identical pressures and flow deflections. The regular wave system depicted in

Fig. 6-5 has a weak compression wave (the arc (2) - (3)) as the reflected

wave.

The reflected wave between polars I and If can be an expansion or

compression wave depending on the orientation of polars I and II. There are

four possible intersection patterns of polars I and !I (Refs. 6-5, 6-6) shown

in Fig. 6-6 that are characterized by the number of points the two curves

intersect. Whenever point (2) on polar II (see Fig. 6-5) is at a lower

pressure than a point on curve I for the same deflection, the reflected wave

is a compression (shock) as described in the preceeding paragraphs. However,

in the m = 0, m = 2 and a portion of the m 3 case (m is the number of

intersection points of the two curves), the geomet'y is reversed and the

solution for the rEflected wave is a simple centered expansion, as shown in

Fig. 6-7. It can be shown (Refs. 6-5, 6-6) that the intersection pattern is

dependent on free stream 'lach number and deflection angle 61, (as well as

the ratio of specific heats for the gas). in any of these cases the wave

pattern becomes irregular when the shock polar I!] does not intersect polar I

(or in the case of a reflected exnansion wave when the characteristic curve

does not intersect i). The simple all supersonic (cross) flow pattern

associated with the regular reflection is no longer possible and a more

complex pattern emerges.

In the model flow prcblem for specified cone and wedge angles and free

stream Mach number (the conical/wedge shock intersection problem), the local
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solution depends solely on the sweep angle (see Fig. 6-1) of the intersection

line. This is because the pressure ratios across each shock wave are constant

and independent of location. In addition the apparent deflections through the

two incoming waves as well as the governing Mach number normal to the

intersection line are all functions of the sweep angle because the flow is

uniform upstream of the wedge shock. Evolution of the shock system transition

from regular to irregular is illustrated in Fig. 6-8. These figures detail

the shock polars for the following conditions: M = 3.0, Y= 1.4, wedge angle

100, wedge pressure ratio pw/poo = 2.054, cone angle Oc = 200, cone

pressure ratio pc/Pw = 1.95 or Pc/Pa0  4.005, (see Fig. 6-1 for

definitions). The asymptotic sweep angle of the intersection line (0..) is

600. Figure 6-8a is the pressure/deflection plane for the initial

intersection of the shocks ( = 0). In this case the polars are very close

together and the reflected wave is a very weak expansion wave which cannot be

seen on the scale of the figure. Downstream along the intersection line Fig.

6-8b shows the shock polar pattern for * = 520. Note that while the polar

patterns are considerably different, the pressure at points (2) and (3) which

are the wedge and cone shock pressures are the same as the = 0° case. At

this sweepback angle, 0- 52*, the normal Mach number to the intersection line

has decreased to 2.15 from the free stream value of 3.0. The apparent wedge

and cone shock deflection angles which were 100 and 20.80 initially are now

130 and 26.20, a geometric result of projecting the flow fields onto the plane

normal to the intersection line. The decreased normal Mach number and

increased apparent deflection moves the solution toward the upper right hand

corner of polar I. A closeup of this upper right hand portion of Fig. 6 -8b
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is shown in Fig. 6-8c. This case is interesting because point (4), the flow

behind the transmitted wave, is on the subsonic portion of polar I. The cross

flow becoming subsonic is a signal that there is an incipient change in

structure. In fact, a small distance downstream where * = 550 (Fig. 6-8d)

polar III no longer intersects polar I, and the regular four wave pattern that

had prevailed is now not possible. A closeup of the interesting portion of

this figure is shown in Fig. 6-8e*

The subsequent flow pattern is characterized by a five-wave intersection

made up of two three wave intersections, as shown in Fig. 6-9a. This shock

pattern is qualitatively similar to the one that prevails in the internal

compression corner flow field (Refs 6-1,2,3,4). The major qualitative

difference is that the two contact surfaces forming the triangular zone behind

the Mach reflection shock meet at a point, denoted b on Figure 6-9a, on a

contact surface. In the compression corner flow field this point is in the

corner. It is not possible to characterize the entire interaction by a single

shock polar pattern because there are now two intersection lines. However, in

order to visualize the process the velocity field normal to the interaction is

approximated as constant and uniform. In Fig. 6-9b the flow in the pressure

/deflection plane would then be as follows (Ref. 6-6) describes the two

dimensional counterpart): (a) points (1) and (2) are at the wedge and cone

shock pressures as before; (b) shock polars I and II intersect in only one

place (for this case) and that determines the pressure and deflection at the

* The change in structure might come at the point where the cross flow becomes

sonic. It is not clear at present exactly where the transition occurs.
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intersection line labeled A; (c) a similar process takes place at intersection

B - the junction of zones (1), (2), (3) and (5) - where B (in Fig. 6-9b)

represents the only possible shock transition starting from conditions (1) and

(2); and (d) where the segment of the shock wave between A and B is a curved

shock (shown as a bold line in Fig. 6-9b).

A schematic of the expected transition pattern is shown in Fig. 6-10.

Relative to the transition or breakup point the flow is conical in nature.

The cross flow is subsonic in the zone immediately behind the shock

interaction and is thus governed by elliptic partial differential equations.

, Thus the propagation speeds of the two triple points leaving the transition

i zone can only be determined as part of the solution of the entire transition

zone. An interesting and important aspect of the flow pattern is that the

pressure levels prevailing behind the interaction shocks are higher than the

levels attained by the regular reflect pattern just before it breaks apart

(shown as the X on polar I in Fig. 6-9b). Thus, at the point along the

intersection line where the shock pattern transitions from regular (four-wave)

to irregular (five-wave) the flow pattern must include a three dimensional

expansion zone immediately behind the shock wave to equilibrate the pressure.

Again the strength and distribution of this expansion zone are determined as

part of the complete solution of the transition zone.

The(impingement) shock lift off problem is another three dimensional

transition problem that occurs in the multinozzle flow field. Between

stations denoted by 0 and 1 Figure 3-2(a) is the initial portion of the

impingement flow field and the origin of the impingement shock surface. The

flow pattern in this region can be studied by examining the simpler flow in
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which two uniform circular jets impinge. Figure 6-11 shows the overall flow

configuration (leaving out the interaction for clarity). Two circular jets

with uniform properties impinge at the symmetry plane. The intersection of

the plume boundary and the symmetry plane is an ellipse. The shock pattern

develops as is shown in an isometric view in Fig. 6-12. In the cases that are

considered here the shock wave is initially attached at the origin. The

initial shock pattern when viewed as cross sections have the appearance of arc

segments anchored at the ends to the intersection line. At some point along

the intersection line this pattern is no longer possible and the shock ends

lift off.

The shock pattern is shown in Figure 6-13 along with the details of the

flow at the shock leading edge. In a manner completely analogous to that

employed to determine the shock wave strength at the leading edge of a swept

wing in supersonic flow (c.f. Ref. 6-7) the shock is examined in a plane

* perpendicular to the intersection line. Again the component of velocity

tangential to the intersection line is unaltered by the shock surface. These

sections appear adjacent to each cross section in Fig. 6-13 . Near the

leading edge the Mach number normal to the intersection is large enough and

the deflection (i1) small enough so that there is an attached shock

solution as shown by the adjacent pressure deflection shock polar diagram.

Downstream at station 2 the normal Mach number (Mn2) has decreased and the

apparent deflection8 2 has increased. The shock polar has diminished in

size and the required deflection (82) is getting near the maximum deflection

possible for Mn2. At station 3 the shock has already lifted off the

symmetry plane. This is required because at Mn3 the deflection 83 cannot
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be achieved by an attached shock. Note that Mn3 and 3 3 are determined

relative to the geometric intersection line of the plume and the symmetry

plane. The actual leading edge of the shock wave moves up along the

undisturbed plume boundary. The flow perpendicular to this leading edge or

intersection line must be at least sonic (see Section 3) because the velocity

must be supersonic to reexpand and match the pressure on the plume boundary.

In the neighborhood of the liftoff point the flow pattern is conical.

With the liftoff point as the origin of a spherical coordinate system the flow

pattern develops along spherical rays and is geometrically similar when scaled

to the distance from the liftoff point. A schematic of this conical flow is

shown in Fig. 6-14. The orientation and relative position of this pattern is

shown in Fig. 6-12. The Mach cone that leaves the liftoff point limits the

extend of its influence. The flow outside this cone is uneffected by the

liftoff. Inside the region bounded by the Mach cone the cross flow (conical)

is subsonic and the governing conical equations are elliptic. Therefore the

solution of this domain rests on an iterative or relaxation procedure. The

segment of the shock between AB (Figs. 6-14 and 6-12) has the following

properties. At point B the shock rotates the flow opposite in sense from that

at point A. At point A and at points 1 and 2 upstream (see Fig. 6-13) the

shock rotates the oncoming flow through a clockwise deflection. At point B

the deflection is counterclockwise. Between A and B the shock goes through

the spectrum and produces no rotation (is normal in the conical sense) at

point C. The shock produces sonic velocity at point B where there is

anchored a centered expansion to reestablish the background pressure. This

expansion produces supersonic cross flow so that a portion of the domain shown

in Fig. 6-14 does not have subsonic cross flow.
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SECTION 7

A NEW METHOD FOR TRACKING DISCONTINUITIES IN NUMERICAL CALCULATIONS

The multinozzle plume flow field is an example of a complex three

dimensional supersonic flow field. These flow fields by their very nature

have solutions which are discontinuous or have discontinuous derivatives.

This is reflected in the mathematical description of the flow field by a set

of hyperbolic partial differential equations. Equations of this type have

wave like solutions which permit the propagation of functions which have

discontinuous derivatives. In addition these equations admit solutions which

are discontinuous. For the Euler equations the jump conditions along these

discontinuities are the familiar Rankine-Hugoniot conditions. Two regions of

continuous solution can be joined by a jump along a shock. A numerical

solution procedure for supersonic flow problems should, therefore, include

within it the ability to deal with these properties. Section 4 of this paper

describes a "floating fitted discontinuity" scheme that tracks each

discontinuity in detail, and computes the jump properties exactly. This

method as outlined requires a large amount of program logic to handle complex

geometries. In this section a new approach to tracking discontinuites is

examined. The algorithm employs the normal functional approximations (Taylor

series) at all regular mesh points. At mesh points which are recognized as

being adjacent to discontinuities the appropriate flow properties are

approximated by discontinuous functions.

There is an underlying assumption in almost all finite difference

algorithms - the unknown function can be approximated locally by a Taylor

series expansion. In fact, finite difference schemes are categorized

primarily on this basis. A scheme is said to be second order, for example,
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if the difference solution and the exact solution expanded in a Taylor series

match to second order. Supersonic flows solution generally cannot be

approximated by Taylor series in all regions. It seems reasonable then to try

to employ other more general functions in portions of the flow where there are

discontinuities. As an example the Euler equations for 2D flow can be written

in vector form* as

Ux + Vy = 0 (7-1)

At a shock wave the values of U upstream of the shock (U-) and downstream of

the shock (U+ ) are related by

S[U] - [V]/W = 0 (7-2)

4 where [ ] means jump across the shock and W is the shock propagation speed.

The exact solution in the vicinity of a shock wave through the origin is

UC=UU- + [U] H (x -y/W)

V =V -W[U] H (x -y/W) (7-3)

where H(z) is the unit step function given by

H (z) 0 z < 0

=I z > 0 (7-4)

Simply substituting (7-3) shows that it is a solution (7-1) (in the context of

the existence of the delta function 8 (z) ) This analysis strongly suggests

that solutions for U in the vicinity of the shock should take the form

U = U- + [U] h (z) (7-5)

where h (z) is a chosen function that has the desired properties of H(z) and

can easily be employed in a numerical scheme.

fo teo u o uv 21

for the Euler equations U= V= 2+

\Puho / \P ph o /
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Before proceeding it is interestinq to note some of the properties of the

"exact" solution for a shock wave Equation (7-3). Neither U or V are

continuous across a shock wave. U + WV is continuous

U" + WV" = U+ + WV+  (7-6)

The vector V is a function of U only. It can be expressed symbolically as

V = F(U) so that V* = F(U4 ) and V- = F(U-). Equation 7-6 is then a

relationship between the vector U- and U+

U- + WF(U-) - U+ + WF(U 4 ) (7-7)

No value of U between U- and U+ can be substituted on the right hand side
4

*of Equation (7-7). In shock capturing schemes where the solution vector U

varies smoothly (or not so smoothly) between U- and U+ in the region of

the shock jump Equation (7-7) is not satisfied. The portion of the flow field

between U- and U+ is an artifact of the calculation and has the inherent

error associated therein.

As a test bed for these ideas the solution of a supersonic flow field

containing a contact discontinuity was employed. This flow field was chosen

because : (1) contact discontinuities spread out over more mesh points than

shocks and (2) it represents a jump in entropy (total pressure) only -

pressure and deflection are continuous across it. In the following paragraph

the use of a ramp function to model a jump in entropy is described in detail.

Then the brief discussion of the numerical calculation procedure is given. At

mesh points away from the jump a standard first order finite difference scheme

is employed. Results of two test computations are discussed in detail. (In

the computer code stagnation pressure is used instead of entropy.)
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The ramp function shown in Fig. 7-1 was employed in order to implement

some of these concepts.

1 z <0

R(z) = 1 - z/h 0 < z < h

0 h<z

Figure 7-2 shows a portion of a finite difference mesh near the vicinity of a

discontinuity in entropy (or stagnation pressure). In the mesh inverval

(j-1, j+l) there is a discontinuity in the function S. If the functional form

of S in this mesh interval is given by the ramp function then

S = Sj+1 + (Sj. I - Sj+ I ) R (x - Xoj) (7-9)

j where Xoj = xj - h(SjI-Sj)/(Sj_ 1 -Sj+I) (7-10)

or A = (Sj-1 - Sj)/(Sj.I - Sj+I)

Xoj = xj -Ah

A possible interpretation of the distribution of S in the interval is shown

as a dashed line in Figure 7-2. S can be envisioned to have a step

discontinuity at the mid point of the ramp function. The value of Sj serves

to locate this point between j-1 and j+1. The governing equation for S in one

dimensional unsteady flow is*

St + uSX = 0 (7-11)

Using the ramp solution of equation 7-11 given by equation (7-9) the value of

S at time At latter than is shown in figure 7-2 is given by

* Discontinuous solutions of this equation follow the same form as equation

7-3. S S - + [S]H(x-ut)
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SNj =Sj+ + (Sj. I - Sj+ I) R (xj - uj&t - x0j) (7-12)

if u > 0

SNj+ 1 = Sj+ I + (Sj-I- Sj+I) R (xj - ujAt + h - x0j) (7-13)

if u < 0

SNj. I = Sj+ 1 + (Sj_ 1 - Sj+ 1) R (xj -ujt - h - x0j) (7-14)

A research code (KAYTI) was written to investigate the utility of the

ramp function in certain problems. The program is for two dimensional

supersonic flows and employs a finite difference calculation procedure using

windward differences and characteristic form for the equations. The purpose

of this section is to describe the results using the ramp function so only a

brief outline of the numerical scheme will be given. The primary unknowns are

pressure, flow deflection and total pressure. The governing equations are

ex + ALI + (d/M2) ( P  + AI  P )= 0

! x yx Py) (7-15)

8x +A 2 ey - (3/vM2 ) (PX +A 2 Py) = 0

(7-16)p+A P =0
Pox 3 oy

(7-17)

where P = Qn(p/pr), AI = tan(e+L), A2 = tan( -),

A3 = tang, and Po = Qn(P o/p) and Pr is

some reference value of pressure. The marching direction is the x direction.

Transverse (y) derivatives in each equation are evaluated by either forward or

backward two point formulas depending on the sign of Ai multiplying that

term. For example, in equation (7-15) the term A1 Py is evaluated at mesh

point J (where y = h(J-1) and h is the mesh spacing) as follows

= (AI/h) (P(J) - P(J-1)) A1 >0

1 Y (A /h) (P(J+1) - P(J)) >,I0
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In this formula all values of the pressure are at the known station x. The

derivatives in the marching direction (x) are evaluated by two point forward

derivatives as follows

Px = (PN(J) - (P(J))/Ax (7-19)

where PN(J) denotes the value of P at mesh point J and x =Ax. Formulas

(7-19) and (7-18) are used for all derivatives in equations (7-15), (7-16) and

(7-17) to derive, at every mesh point, two equations in the two unknowns PN

and9N and an equation for PON. The code overrides the basic equation for

PON if it is determined that there is a discontinuity in Po at some mesh

point. Then the determination of PoN employs the ramp function algorithm as

outlined in the previous paragraphs.

Figure 7-3 shows the schematic of the flow field used as the first test

example. Initially at x = 0 and y > 0 the flow is inclined at 150 to the x

axis. At x = 0 and y = 0 the flow inclination is 100. The flow has a Mach

number of 2 at mesh points 2-10 and 4 at mesh points 11-50 and 2.19 at mesh

point 1. The flow situation develops as follows. There is initially a

discontinuity in total pressure between mesh points 10 and 11. A 50 expansion

which is initially between mesh points 1 and 2 propagates into the flow and

interacts with the contact surface. At the contact surface both pressure and

flow deflection are continuous and there is a jump in stagnation pressure.

The flow is divided into five regions by the expansion waves as shown in

Figure 7-3. In these regions the flow properties are constant and the exact

solutions are given in the table on the fiqure. Figure 7-4 shows the

numerical computation of this flow using KAYTI. The step size in the x

direction is held fixed at h/2 for these calculations. The values at the

boundaries y = 0 (J = 1) and y = 49 (J = 50) are also held fixed.
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DISCONTINUITY
SURFACE

® ///

REF LECTED
EXPANSI ON®(

/4/

t V
J=2 J= 0.5

TABLE OF PROPERTIES IN EACH REGION

M 6 in (P/P ) in (p 0/P l) 6 + 6 -

12 .262 0 2.057 .722 -. 199
2 4 .262 0 5.023 1.41 .886

3 2.19 175 -.291 2.057 .722 .373

4 2.24 .199 -.375 2.057 .771 -.373

5 4.29 .199 -.375 5.023 1.41 -1.01

Fig. 7-3 Schematic of Supersonic Flow Field Having an Expansion
Fan Interact with a Discontinuity in Total Pressure
(Test Case One)
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Fig. 7-4 Numerical Computation of Test Case 1 (Sheet 1 of 3)
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(c) STAGNATION PRESSURE
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CALCULATION
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Fig. 7-4 Numerical Computation of Test Case 1 (Sheet 2 of 3)
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(e) 0 -
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Fig. 7-4 Numerical Computation of Test Case 1 (Sheet 3 of 3)
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Figures (7-4) (a) and (b) show the smooth development of pressure and flow

deflection. In these diagrams it is hard to see where the discontinuity is.

Figure (7-4) (c) shows the total pressure profiles. The ramp profile joins

the constant region on the left to the higher but constant region on the

right. The jump in total pressure takes place with a single intermediate mesh

point. At two stations step 60 and step 90 these are actually two

intermediate mesh points. This occurred because the detection scheme for

locating the total pressure discontinuity was very primitive. In any event

the algorithm produces self mending results. Figures (7-4)(d) and (e) show

- the profiles of Reimann invariants 0+; and 0-, respectively. The code does

not use these variables in the computations. These graphs serve as checks on

the calculation procedure. The jumps that occur in each of these profiles is

a result of the jump in total pressure which is associated with a jump in Mach

number and hence a jump in u the Prandtl Meyer angle. In (7-4)(e) the initial

expansion fan starts at x 0 between mesh points 1 and 2. It moves to the

right (along e+ .characteristics) and spreads out. The natural spreading of

the fan is augmented in the numerical calculation because the wave front

(discontinuous jump in derivative) at the head and tail of tt'a fan are not

tracked by the program. (There are no general algorithms for the computations

of supersonic flow which address this point.) By step 20 (x = 10) the

expansion has intersected with the contact discontinuity and is subsequently

transmitted. Only a wave moving to the riqht appears in the results for 9-.

This is in accordance with classical supersonic flow theory. In Fig. (7-4)(d)

the left moving waves become evident. Before step 40 only the movement of the

discontinuity is evident. Then at step 40 the reflected expansion wave starts

to form. The values of 0 v ande-P in regions 4 and 5 are compared with
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their exact values in the table below. Is it clear that the numerical

calculation is very accurate in the comoutation of these quantities.

Comparison of Characteristic Calculation and Finite Difference Calculation

Region (0 + ) FD + )Char (e- v FD (- V) Char

4 .770 .771 - .373 .373

5 1.41 1.41 -1.01 1.01

Figure 7-5 compares the computations using the ramp profile with a

computation that does not specifically "fit" the discontinuity. Figure

(7-5)(a) compares the profiles of total pressure. The profiles are smooth but

*the jump in total pressure is spread out over approximatley fifteen mesh

points. Figure (7-5)(b) and (c) show the profiles of the Reimann invariants.

Again the results are smooth and have the correct values upstream and

downstream of the discontinuity. However, it is clear that in these results

the discontinuity zone is now fifteen mesh points wide. This represents about

one third of the mesh points used in the calculation.

The most series errors in the computed results using the ramp function

appears in figure (7-4)(c). The exact location of the discontinuity and the

center of the ramp function have drifted apart. This is a result of the wave

front spreading noted in the previous discussion. The expansion zones spread

out ahead of the exact characteristics location and cause the value of the

streamline slope to change in advance of the proper positon. In order to
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Fig. 7-5 Comparison of Numerical Calculation of Test Case One
With and Without Ramp Profile
(Sheet 2 of 3)
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Fig. 7-5 Comparison of Numerical Calculation of Test Case One
With and Without Ramp Profile
(Sheet 3 of 3)
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determine if this is the correct explanation an additional calculation was

performed that did not have a wave front in the initial profile. Figure 7-6

shows the characteristic mesh for this computation. At step zero there is an

expansion zone which is propagating toward a constant pressure boundary. In

the finite difference program this constant pressure boundary is modelled by a

jump in total pressure. The expansion zone impinges on the boundary and

reflects as compression waves which move back into the flow. On this figure

is the computed location of the flow boundary by the finite difference

calculation. The agreement is virtually perfect. Figure 7-7 shows pressure

profiles for the entire computation. Figure 7-7(a) is the initial pressure

distribution at x = 0. Figure (7-7)(b) is at x = 10 where the expansion has

partially reflected from the boundary. The finite difference computation and

the characteristic calculation are in virtual agreement. The largest errors

seems to be near the boundary where there is a break in slope in pressure.

Figures 7-7(c) and (d) shows the subsequent development of the flow field. At

x = 70 the compression wave is about to reflect from the inner boundary.

There is a spreading of the wave that is first evident at x = 40. At x = 70

the finite difference results first preceded then lag the exact calculation by

3-4 mesh points. The precise cause of this dispersion has not been studied.

Two primary sources that should be investigated are the first order nature of

the computational algorithm and the details of the reflection process at the

boundary ramp function.
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Fig. 7-6 Test Case Two -Calculation of Constant Pressure Boundary
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The use of the ramp function in three dimensional flow requires further

work. In two dimensional flow the actual position of the discontinuity was

associated with the intermediate value of the function. In essence the method

tracks the discontinuity on a subgrid basis. In three dimensions this

tracking must take place in two directions (in the cross plane). A method

must be worked out to accomplish this in a simple manner. The ramp function

must also be tested out in flows with shock waves. The shock waves have a

jump in all flow properties and not just a single one as was employed in the

test calculations. The shock propagation problem has the added complication

that the properties behind it are a function of the shock (wave) speed.

7-20



SECTION 8

MACH DISC ANALYSIS AND NUMERICAL COMPUTATION

Shock wave systems in exhaust plume flow fields can develop in a manner

which produces normal shock waves or Mach discs. in axisymmetric flows the

shock wave strength intensification process leading to the formation of the

Mach disc is understood on theoretical grounds. For three dimensional plumes

there is little or no knowledge of the processes and flow properties that

result in normal shock segments in the plume (see Section 3). The numerical

prediction of the location of the Mach disc in axisymmetric flows has been

accomplished in recent years (Refs. 8-1, 8-2). These studies are purely

numerical calculations. In this section an analysis is derived which

explicitly highlights the key properties of the exhaust plume that influence

the Mach disc location. Employing the results of this analysis a new numerical

integration scheme is derived to compute Mach disc streamtubes. This new

method has the potential for overcoming the shortcomings of the previous

integration procedures. The improved understanding of the axisymmetric 11ach

disc physics should serve as a first step in understanding the three

dimensional plume situation.

A schematic of an axisymmetric plume with a Mach disc is shown in Fig.

8-1. At all points in the flow outside of the Mach disc streamtuhe the plume

gas velocity is supersonic. A barrel shock divides the plume into a "core"

and a shock layer upstream of the Mach disc. At some point along the barrel

shock there is a triple point which is the confluence of the barrel, reflected

and Mach disc shock waves. Downstream of the triple point the flow is divided

into a supersonic flow bounded on the outside by the reflected shock wave and

plume boundary and on the inside by a dividinq streamline and a subsonic core.

The subsonic core flow has passed through the nornal shock ('Aach disc' ind is

centered about the plume axis.
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Fig. 8-1 Schematic of Axisymmetric Underexpanded Rocket Exhaust Plume
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According to Abbett (Ref. 8-1) the triple point location can be uniquely

determined by finding the Mach disc position which leads to a smooth passage

through the sonic acceleration of the subsonic streamtube (see Fig. 8-1). In

both Refs. 8-1 and 8-2 the following models were employed. The subsonic

streamtube was described by a one dimensional flow model. For an estimated

position of the triple point the subsonic flow and supersonic flows are

computed simultaneously by a forward integration schemes. Two possible

solutions result: a supercritical flow has the subsonic streamtube reaching

sonic velocity while it is still decreasing in area. In the other case, a

subcritical flow the subsonic streamtube reaches a minimum in area and then

increases in diameter without choking. An iterative procedure is employed

*which narrows down the axial position of the triple point by observing these

two types of solutions. This is a classical shooting method to determine a

solution for a system of equations which have a saddle point singularity

downstream (at the throat of the subsonic streamtube). The basic disadvantage

of this scheme is that no solution for the subsonic streamtube emerges.

Rather a bracket on the triple point location is developed. The existence of a

solution within this bracket is not certain.

The present method does not require shooting the solution from the triple

point location. In the inviscid approximation the location of the sonic

throat can be calculated without a subsonic calculation. The subsonic

streamtube can then be computed by an upstream integration of the equations

from the sonic throat making use of certain known properties of supersonic

flow to determine the outer flow. A viscous approximation to the Mach disc

problem is presented which accounts for the effects of mixing between the

subsonic streamtube and supersonic flow in the simplest manner possible. This
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does not alter the basic computational scheme but adds one more layer to the

iteration scheme.

A one dimensional model for the subsonic streamtube is retained. The

equations governing the flow passing through the Mach disc are (Ref. 8-3)

M2-1 1 dp + 1 dA 1 + (V'-1)M 2  _ .

YM2  p dx A dx 2 (8-)

1 dp 0  = 2VYMf\S dP Y2( ) (8-2)Spo dx

where M is the Mach number, p the static pressure, A and D the subsonic

streamtube cross sectional area and diameter, Po the average stagnation

pressure, and f is the friction factor. Using a friction factor in this

manner is an approximation that allows for the simple introduction of mixing

effects along the dividing streamline. The flow behavior outside the dividing

streamline is incorporated in the function f(x) =H+,, which is the value of

the Reimann invariant on the downward running characteristic determined from a

calculation of the supersonic flow. The pressure on the outside of the Mach

disc tube flow is related to f by the following steps

= + , (8 -3 )

)' denotes d/dx

is the Prandlt Meyer function and is only a function of external Mach number

(m)

dv dv dm

dx dm dx
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using
P -Y/y-1

- = (1 + Y- 1 M2

Po2 2

and the fact that Po2 is constant along the bounding streamline equation

(8-3) becomes

-- 4- h(m)

where h(m) p dm dv 1 - Y1 2 1 2 1 2)
(1+ dm )o -7 7+E 1+02

where 3=v and E =

Equation (8-4) relates the pressure gradient in the external supersonic stream

to the geometry ( '(x)) of the subsonic streamtube. The solution of the Mach

disc flow requires that the pressure along the dividing streamline is matched.

Therefore, combining equations (8-4) and (8-1) the basic interaction equation

is

--I (f-') + 1 dA = I+(f-1M (4f)(8-)
2  h(m) A dx 2 D

For axisymmetric flow A =7y2 where y is the local height of the subsonic

streamtube. The governinq equations become
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I

e'-f + B8 a! (-M 2 ) (3-6)

1 dp
0 "

p dx (8-7)

where B = 2YM2 h(m) (8-8)

1-M y

2 y (8-9)a : YM2 h(m) [1+(Y-I)M2 ] !y

2 MZy Y 8-10)

Equation (8-6) is the fundamental interaction equation governing the pressure

balance between the supersonic and subsonic flows and combined qith equation

(8-7) (when / # 0) must be solved to determine the subsonic streamtube

solution. The approximation tan 0 has been used in the derivation. The

numerical solution of equations (8-6) and (8-7) will be discussed in later

paragraphs. A discussion of the properties of equation (8-6) brings out

interesting properties of the Mach disc and associated plume.

in the inviscid case it is possible to locate the sonic point in the

subsonic flow before solving equation (8-6) by the following process. For a

given location of the triple point along the barrel shock the computation of

the external supersonic flow can be continued employing an approximate shape

for the dividing streamline (see Fig. 8-1). From this solution the function

f(x) = 8+ along the dividing streamline can be determined. Downstream of

the Mach disc the total and static pressure as well as the Mach number MI

are known and denoted p, and Pol" The corresponding sonic pressure p* can

be computed by the formula.
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The sonic condition reqgires that 0 = 0. Determine the pressure on the

supersonic side of the dividing streamline at every point for a = 0 from the

(known) function f(x)

(x) f (x) -W (x)

(X)Wx f (x)

Use the isentropic expressions relating , to in and m to p to compute the

pressure. Figure 8-2 shows a schematic plot of this pressure versus x. The

sonic point or throat for the inner flow is determined at the point where

these two curves cross. (Figure 8-2 shows two such crossings. It will become

clear in the following discussion why the second crossing is the appropriate

point). The point denoted x* is the throat because it has the two required

properties e =0 and p = p*.

Properties of the solution at the initial point and the throat can be

deduced from the interaction equation. For inviscid flow the interaction

equation is

0'-f'+ B O= 0 (9-11)

The coefficient B is always negative for subsonic flow (Note that h(m) < 0).

At the triple point the pressure is matched at Pl. There are two

possibilities e 1 > 0 or81 < 0. For 0 1 >0 e'-f'= -Be> 0 therefore

0'> f'. Thus if f'> 0 the initial dividing line will be unstable because

9' > 0 and the slip line slope increases and forms an upward cusp. To

attain a concave downward curve the inital value of f' must be negative. In

terms of pressure this is a compression wave. In the case of el < 0 a

stable curve can only be achieved for f' < 0. In all plume calculations that

have been examined the initial flow behind the triple point is compressive or

has f' > 0, therefore, in these cases it is concluded that the initial slope

of the dividing streamline must be positive.
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At the sonic throat the flow is accelerating and so dp/dx < 0. The

pressure gradient has the same sign as 0'-f' since h(m) < 0 (see equation

(8-4)). Thus 8'-f' < 0 or f' > 8'. The sonic throat has the following two

conditions 8 = 0 and 8' > 0. Therefore, the throat can only occur when

f' > 0 or an expansion portion of the supersonic flow. This precludes the

sonic throat from occurring at the first place the curves cross in Fig. 8-2

where f'< 0.

The following general picture (Fig. 8-3) emerges for the Mach disc

streamtube. The solution curve in Fig. 8-3 is the pressure on the dividing

streamline or in the subsonic streamtube. Also shown is the curve of pressure

in the supersonic stream for 9 = 0 on the dividing line (denoted curve A) and

the values of total pressure Pol and sonic pressure p* in the subsonic

streamtube. When the solution curve is above (below) curve A 9 > 0 (8 < 0).

The solution starts downstream of the triple point with pressure pl. For

all flows where there is a compression following the triple point in the

supersonic flow the initial angle must be positive and decreases with x.

Downstream of the triple point the subsonic streamtube undergoes an increase

in pressure until the value of 8 reaches zero. Downstream of this point in

Zone (2) f' is still negative signifying a compressive outer wave pattern but

0' ( f' so that the pressure drops and the angle decreases. In Zone 3 the

outer flow is expanding and the function f' > 0. The value of 8 increases

smoothly ( 8' > 0) and reaches zero precisely at the point where sonic

conditions are met and the inner streamtube is choked.
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Fig. 8-3 Geometry of Mach Disc Stream Tube and Corresponding
Solution of Interaction Equation
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It is clear that the function f plays a decisive role in determining

the subsonic streamtube solution and hence Mach disc position. The value of

the function f is related in a complex way to the entire plume flow solution

upstream of the triple point. It is possible, however, to highlight some

interesting properties which determine f. The value of f, the Reimann

invariant on the downward running characteristic, would remain constant and

equal to its value on the plume boundary if the flow were two dimensional and

isentropic. Because the plume is axisymmetric and nonisentropic f is not

constant along the waves but it is expected that whatever variations are due

to these effects are approximately the same for all waves.

Figure 8-4 is a schematic of two plumes at widely different free stream

conditions. The quiescient plume is shown for a slightly underexpanded nozzle

*exit conditions. The Mach number in the plume shock layer (between interface

and barrel shock) is low, therefore, the downward running waves are at a steep

angle and reach the Mach disc streamtube in a short axial distance. The

pressure on the plume boundary is constant so that the variation in the

function f comes from the curving plume boundary (Constant pressure means that

is constant). The extent of the plume interface which directly influences the

Mach disc flow is rather short. The highly underexpanded plume (Fig. 8-4b)

has quite a different picture. The gas in the plume shock layer is at very

high Mach number so that the portion of the plume boundary where f originates

is quite extended. In addition the plume is in a hypersonic free stream which

creates a large pressure gradient on the interface. Therefore, the details of

the pressure and deflection along a large segment of the plume boundary are

influential in determining both e and v along the interface and hence on the

value of f at the Mach disc interface.
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Fig. 8-4 The Boundary Zone of Influence on the Mach Disc Flow
for Two Types of Flow
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The effect of viscous mixing along the Mach disc streamline introduces

additional complexity and new features in the solution. Within the scope of

one dimensional analysis it is possible to introduce mixing effects in a

global sense. It is realistic to employ this approximation at present because

the actual detailed two dimensional flow field is a complex transonic flow

with turbulent mixing and transverse pressure gradients which would be

difficult to accurately model. In the model adopted here the influence of the

mixing is to introduce a mechanism that increase the total pressure in the

subsonic flow. Mixing also changes the flow inclination that the supersonic

flow sees along the dividing streamline through a displacement effect. This

effect is not incorporated in the present model. The sonic throat condition is

no longer e = 0 but it has a small negative value. The increasing value of

Po with distance results in increasing flow Mach number even at constant

static pressure. Equations (8-6)-(8-10) show the relationship of the mixing

terms in the interaction equation (8-6) and the total pressure equation (8-7).

The Mach disc flow has lower velocity and lower total pressure than the outer

supersonic flow so that fis negative and al is positive. A solution

curve with mixing is sketched in Figure 8-5. The main difference to note in

this solution compared to the inviscid solution (Fig. 8-3 ) is that po and

p* are increasing with distance. The sonic throat is again located at the

point where the pressure (ps) evaluated by setting e = 6 * (using the

function f) is equal to p*. In this case, however, the value of 0* is not

known a priori and must be determined as part of the solution.
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The numerical integration procedure for the so!ton jf "he '-terac-'on

equation is based on iitegrating the equation 13-0 Dackward :tart-nq it tle

sonic throat. Several integration schemes have been emploved with virtual 'y

equal success. The numerical integration procedure for the 'nviscid oase 's

outlined first. The extension to the viscous case follows naturally and is

detailed at the end cf this chapter. The starting solutions at the throat are

derived and their numerical implementation is discussed. The solition

proceeds using the following sequence of steps:

(In the followng discussion superscript (i) denotes iteration number and

• y(i) denotes the subsonic streamtube height computed as a result of the

estimated value by y(i

1) Compute y* and estimate M(O), y(1)

2) Determine the location of the throat x* and the flow gradients there.

3) Solve the interaction equation for 0 (x) by integrating backwards

from the point x*, y* where 9 = 0

4) Determine y(i) by integrating the above solution for .

5) Combine the estimated values of y(i) and the computed values of y(i)

to achieve the next estimate for the Mach disc streamtube y(i+1)

6) Repeat the steps (3) - (5) until the solution converges.

The details for each step are outlined in the following paragraphs.

Step 2 The solution of the interaction equations has a classical saddle point

singularity at the sonic throat. This can be verified by assuming that the

Mach number in the neighborhood of the throat is given by

M2 = a (x - x*) and investigating the nature of the interaction equation

near x = x*.

8-15



,onsloerinq the relatlionsnip between oressire and Aacn number 'or *ne Iacn

disc flow 1 M -2-

EM dx y)V I ix

E L +l-M22
Su stitute M2  1 a x - , '3 -f ;, and 0 Dx -x ' o

P dx

get a relationship between the Mach number iradient a and tne jiviilni

streamiine angle gradient b.

b -' h* a f' *

In order to be self consistant the subsonic flow must aIso sarsf the one

dimensional Mach number area relationsnip

1-M" dM 2dA -46

EM2 dx A dx y

Again using the expansions for 4 and Q near the throat a second relationsnhw

between a and b can be derived
0

a - * b

Y+1

Combining these two relationships results in a single juadratic equathon

a2y* + a (2Yh*) = 2 (Y+ I) f '*

Step 3 The interaction equation (8-6) is inteqrated from one node ooint to

the next. The value of the function R is assumed known from a previous

iteration step. If i denotes the iteration step and x i is the 4al,,ie of x

for mesh point j
8'-%f' + B& = 0

i+1 i+ (f - f + 3i  i Xe e - :'3 dx

j+ i .
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The evaluation of the inteqral in equation (3-12) was achieved by either of

two methods both of which are given below. In method I the trapezoidal rule

4s employed resulting in 2  (f " f.)

j+1

(1 -B x1 X/2)

:n the second method it is assumed that -he function B has a sincular behavior

as follows

3* A
B* (x

Nhere B* is a constant which characterizes the singularity at x*. This

results in an integration formula

"i1 ' + +131 + B x,2 f)
3J 1- ,. B - x,

Mhere = - ''' .+1 xi, n [ - + - i

xj+1 x n * (x n xj+1 x
- i )'() - ,j 3

Step 4 A simple trapezoidai Integration formula is used to integrate

backwards the point X = K*, y = y* usinq the solution for P

2 = tan 2 P

Deniot n ttie 4a e )y Y
1~ +11 +

) j3. "i j .

Steo 5 3aseo on tne new va!ie of Oil" at each mesn point an iodate!

:a! je 'or tie 'Aach number on te sjlersonic side of tne li'1 q streamline

-an )P :omputed by invert 1 c o 'or i's' n a

- - , - ,imimbammai



Using this Mach number and the total pressure of the outer (supersonic) stream

an updated value of static pressure can be computed. Combining this pressure

and the total pressure of the subsonic streamtube at each point with the Mach

number pressure relationship yields

(po/p) l-

Based on the computed value yji+1 and the known value of y* for the

subsonic streamtube another estimate of the subsonic streamtube Mach number is

computed

/Mi +1 = F (Yji+I/y,)

where the function F is used symbolically to denote the inverse of the Mach

number - A/A* relationship. (This equation is actually solved by a simple

iteration.) Finally a new value of M is determined by combining the estimates

M and M using the underrelaxation formula

Mji+l = .25 ji 1 + .75 (Mj +

The solution for the viscous case proceeds in exactly the same manner as

outlined above for the inviscid streamtube case with the following

modifications. The initial location of the sonic point cannot be made because

the sonic throat angle 0* is given by the formula

A

A
Since f* depends on the solution an initial estimate of the viscous solution

is necessary to determine x*. The equation for stagnation pressure po of

the inner streamtube is achieved by straightforward inteqration, again based

on the current iterate value of a I (x). In the inversion to determine

M~i+ 1 the value of y* must be computed for each station using the

relationship poA* = constant for the inner flow
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Two test cases were empl oyed to determine if the theory and computer

code were operating satisfactorily. The first test case consisted of a known

exact solution (inviscid) which the program was required to reproduce. The

second test case was an actual Mach disc flow with substantial mixing effects.

In the first case the computer code and theory reproduced the exact solution

to a very close tolerance. In the second case, the code was used to analyze

the flow pattern and achieved very good agreement with all reported measured

quantities. However, the experimental results reported in Reference (8-4)

were not complete enough to allow prediction of the Mach disc location.

The first test case was devised by prescribing a subsonic streamtube given

by the equation

, y = 1.36 + .36 cos (.59169x - 2.1664) (8-13)

which is shown in Figure 8-6. The streamtube is assumed to choked at the

throat where y = 1.0 the Mach number is unity. Using isentropic flow tables

the Mach number distribution and pressure distribution in the streamtube were

computed . The compatible outer supersonic flow is constructed as follows. A

total pressure ratio (outer supersonic stream to inner subsonic stream)

Po2/Pol = 14.403 was chosen. The outer static pressure is set equal to

the inner subsonic streamtube pressure. The pressure and total pressure is

known at each point on the slip line so that the Mach number can be computed

(m(x)). The local slope of the streamtube

e y' = -.21301 sin (.59169x - 2.1664)

is computed at each point and thus the function f(x) = & + v can be computed

on the supersonic side of the slip line. The Prandlt Meyer function P is only

a function of m and is computed at each point. This construction has defined

a subsonic streamtube with a consistant value of 0 + " resulting in matched

pressure on the dividing streamline.
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Ba;ed on the following input f(x), Po2/Pol = 14.403, m(x = 0) = .5,

y (x = 0) = 1.158 the computer code is used to predict the slip line height

y(x). If the program is working properly it should reproduce the streamtube

given by equation (8-13). The computed solution can then be compared with the

original equation to determine the accuracy and efficiency of the computer

code. Tables 1 and 2 summarize these comparisons. Table 1 compares the exact

original geometry and the computed numerical results. Columns three and four

are the errors in the streamtube height and slope respectively. This

calculation employed forty iterations and used method 2 for the integration

scheme. The errors are at most 2 x l0- 3 which is entirely acceptable in

this case. (The function f(x) was only input to three decimal places.) For

* this calculation the pressure on the subsonic and supersonic side of the slip

line are compared in Table 2. Column one is the accumulated difference (sum

of the absolute values) in pressure difference along the slip surface. The

total accumulated error is .0073 for the entire 37 points of the calculation.

Thus on the average the difference in pressure at each mesh point is

approximately .0002. This is well within the expected calculation accuracy.

The convergence of the solution is shown in Figure 8-7, where the Mach

number of the subsonic streamtube is plotted for the iterations 1,2,3,5 and

10. Iteration I is the starting solution which in this case was chosen to be

M = .25 everywhere but in the vicinity of the throat where the local throat

solution was employed to get a good first approximation. The relaxation

procedure showed very good properties in this case. The successive estimates

for Mach number proceeds smoothly (but not monotonically) toward the final
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Table I Comparison of Numerical Calculation and Exact Solution

3 Y-Yexact Y Y'exact Yexact Y exact

x10 2  x,02

1 .00 -.0949 -.0176 1.158037 .17633
2 .25 -.0985 .0564 1.204165 .19202
3 .50 -.0648 .2847 1.253695 .20351
4 .75 -.0493 -.0842 1.305549 .21056
5 1.00 -.0706 -.0096 1.358591 .21301
6 1.25 -.1015 -.1594 1.411664 .21080
7 1.50 -.1082 .1811 1.463609 .20400
8 1.75 -.1058 -.0888 1.513290 .19273
9 2.00 -.1107 .1167 1.559624 .17726

10 2.25 -.1322 -.2269 1.601598 .15792
11 2.50 -.1741 -.0551 1.638295 .13512
12 2.75 -.1880 -.0112 1.668913 .10938
13 3.00 -.1873 .0519 1.692785 .08125
14 3.25 -.1744 .0754 1.709388 .05134
15 3.50 -.1546 .0955 1.718360 .02031
16 3.75 -.1373 .0452 1.719505 -.01116
17 4.00 -.1234 .0559 1.712798 -.04239
18 4.25 -.1065 .0588 1.698386 -.07270
19 4.50 -.0968 -.0139 1.676582 -.10141
20 4.75 -.0969 -.0273 1.647865 -.12791
21 5.00 -. 1112 -.1430 1.612859 -.15162
22 5.25 -.0992 .1835 1.572332 -.17201
23 5.50 -.0679 .0013 1.527166 -.18865
24 5.75 -.0381 .1653 1.478350 -.20117
25 6.00 -.0160 -.0631 1.426948 -.20929
26 6.25 -.0036 .0819 1.374085 -.21285
27 6.50 .0274 .0859 1.320913 -.21175
28 6.75 .0502 .0201 1.268596 -.20603
29 7.00 .0459 -.1282 1.218274 -.19581
30 7.25 .0176 -.1674 1.171049 -.18131
31 7.50 .0186 .1129 1.127950 -.16285
32 7.75 .0556 .1274 1M089919 -.14084
33 8.00 .0614 -.1276 1.057787 -.11575
34 8.25 .0619 .0942 1.032257 -.08813
35 8.50 .0692 -.0625 1.013884 -.05859
36 8.75 .0565 -.055) 1.003071 -.02776
37 9.00 .0397 -.,")854 1.000053 -.00367
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Table 2 Comparison of Pressures on Either Side of the Slip Surface
J

J x AP x 102 Psubsonic Psupersonic
1=1

1 .0145 .842616 .842761
2 .0324 .870053 .870231
3 .0522 .892628 .892827
4 .0748 .910797 .911023
5 .0983 .925232 .925472
6 .1223 .936721 .936962
7 .1462 .945849 .946088
8 .1700 .953059 .953297
9 .1932 .958691 .958923

10 .2162 .963049 .963279
11 .2388 .966365 .966590
12 .2610 .968865 .969087
13 .2829 .970659 .970878
14 .3045 .971839 .972055
15 .3259 .972460 .972674
16 .3472 .972546 .972760
17 .3686 .972106 .972320
18 .3903 .971118 .971335
19 .4124 .969525 .969746
20 .4347 .967241 .967464
21 .4573 .964141 .964367
22 .4808 .960097 .960331
23 .5046 .954893 .955131
24 .5286 .948238 .948479
25 .5526 .939761 .940001
26 .5764 .929029 .929268
27 .5993 .915578 .915807
28 .6206 .898747 .898960
29 .6393 .877762 .877949
30 .6545 .851860 .852012
31 .6673 .820728 .820857
32 .6765 .784111 .784203
33 .6777 .741203 .741215
34 .6791 .692629 .692642
35 .6874 .639292 .639209
36 .7033 .581848 .581689
37 .7279 .522517 .522270
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Fig. 8-7 Convergence of Mach Numbers for Inviscid Test Case

8-..24



result which are shown in Figure 8-8. In this particular example the function

f actually has a slight increase near x = 0 which is reflected in the initial

increase in slope of the slip line (0'(0) > 0). Mach number decreases from

its initial value of .5 to .2 at x = 4 with the associated increase in

pressure to near stagnation pressure. in this region of very low Mach number

the subsonic streamtube behaves very much like a constant pressure boundary.

In mathematical terms the function B in the interaction equation is very small

and to a good approximation the interaction equation reduces toO - f' = 0 with

the solution

0 f - f( e= o)

This property is displayed graphically in Figure 8-9 where 8 and the

difference f - f(0=0) are plotted. In this type of flow the central role of

the function f is very clear. Only near the sonic throat where B is order

unity does the solution for e differ markedly from f - f ( 9 = 0)

The second test case employed the flow field in a supersonic diffuser as

reported in Ref. 8-4. The geometry of the flow is shown in Figure 8-10. An

incident shock approaches the diffuser axis. At z = 0 a Mach disc is formed at

the intersection of the reflected and incident shock waves. There is a mixing

layer between the supersonic stream and the flow which passed through the Mach

disc (normal shock). In the mixing layer the flow Mach number smoothly passes

from subsonic to supersonic. Therefore, the sonic line appears to eminate

from the triple point and move almost horizontally at first before curving
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EXPERIMENTAL MEASUREMENTS
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Fig. 8-10 Flow Field for Test Case 2 -Viscous Mach Disc
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downward and intersecting the axis. Reference 8-4 reports the profiles of

Mach number, total pressure and impact pressure at six stations downstream of

the shock triple point. Only the first three stations are relevant to this

study because the inner streamtube is supersonic downstream of these. It is

important to note that the exact location and size of the Mach disc were not

measured in the experiment and that the closest station to the triple point is

at z = .5 inches. It is pointed at in reference 8-4 that no attempt was made

to probe the exact for orientation of the shock configuration in the vicinity

of the triple point where the shock may be curved.

This flow field was studied using the present analysis as follows. Since

the details of the upstream flow field are unknown not enough information is

presented to attempt an a priori computation of the Mach disc location and

height. It is possible, however, to determine if the computer code gives

results consistant with various aspects of the experiment. In order to do this

the function f(x) = 9 + v was computed using the experimentally observed

values for the Mach number on the supersonic side of the slip line and the

reported slip line geometry. From the published results the value of the

streamline slope was taken to be approximately zero. This was all possible

downstream of the first measured station which was at z = .5 inches. The

properties at the triple point and its precise location were not presented in

the reference. The triple point solution was constructed subject to the

constraint that the pressure downstream was given by the normal shock pressure

(M = 4.60 upstream). This renders the Mach disc calculation a function of

only a single parameter - the deflection across the incident shock, for

example. It was determined that the Mach number M4 (see Fig. 8-10)
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downstream of the triple point (supersonic) was only a weak function of the

initial deflection angle ( 6 ) and equal to 1.89 which is entirely consistent

with the experimental results. The initial flow angle downstream of the

triple point (0. see Fig. 8-10) is a strong function of 8 1. Since the

flow field is expanding downstream of the triple point the initial angle must

be negative. The value 8i was prescribed to be -3.5 ° and the solutions were

not found to be inconsistant with this value.

With function f constructed above, the value of Po2/Pol based on the

triple point solution and an estimated initial height of the Mach disc a

series of solutions was computed. Only one series of computations are

detailed here. Three values of the friction factor constant were employed

-.01, -.005 and 0 (the inviscid case). Figure 8-11 shows the computed slip

line location with two experimentally measured Mach number profiles together

with the result of the computations for the one dimensional results. It is

important to note that the slips line location quoted in reference 8-4,

denoted by S are far outside of an estimate based on the Mach number profile.

It is believed that this occurred because the authors extrapolated the stream-

lines back to a triple point location they estimated based on a straight

transmitted shock from z = .5 back to z = 0. In the present calculation the

initial height of the Mach disc was chosen so that the slip line passed

approximately through the center of the mixing layer (based on Mach number

profile) at the z = .5 station. At both stations the one dimensional values

of Mach number are reasonable averages of the measured profiles. Note that

the one dimensional values have gone supersonic at the second station.
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Figure 8-12 presents the computed slip line location for the three cases

and the Mach number calculations along with the experimental centerline

values. The effect of viscosity is to move the throat upstream closer to the

Mach disc. This is expected because mixing in these cases increase the

average total pressure of the subsonic stream which increases the Mach numbers

(by decreasing the local value of p/po). The experimental sonic line is

shown in the figure. It is not possible from these results to conclude which

value of friction factor is most appropriate. The measured centerline Mach

numbers are below the calculated values in all coses which is to be expected

based on the upward curvature of the dividing streamline

4 Figure 8-13 shows the total pressure distribution for the three cases. The

*; total pressure increment at the sonic point is 13 IS and 8 % for the cases with

friction constants k = -.005 and -.01 respectively. In this case the effect

of mixing does not have a dramatic effect on the geometry of the flow field

(Fig. 8-12). Friction moves the sonic point a noticeable amount, however, by

far the largest force on the flow is the static pressure gradient. These

conclusions cannot be carried over to the Mach disc in a plume because in that

case the initial pressure gradient is compressive behind the Mach disc (f(x)

decreases). Therefore, the static pressure gradient tends to decelerate the

flow in opposition to the total pressure gradient which is driving Mach number

in the opposite direction.

8-32



M

k =-.01 k=-.005 !NVISCID

1.0

.50

0.0 (a) MACH NUMBER

.4 THROAT LOCATION

-.01 -.005 INV
I EXPERIMENTAL

.2 SONIC LINE

012 3 z

(b) SLIP LINE GEOMETRY

Fig. 8-12 Comparison of Computed Results for Various Friction Factors
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NOTES FOR VISCOUS SOLUTIONS:

Throat solution - the Mach number gradient a at the throat is given by

solving the equation

y * ) + a(2Yh* - (+I)YA*) = 2(Y+1)f'* Y (/+) + 2 A0(+Z)*

The slope gradient b is then

b = f'* -Yh*a/(Y+1) +yh*f,,/y*

and the throat angle is

* =Yf.

A
The friction factor f is related to the inner and outer Mach numbers by

M =2k o n-M 2~

refre) - m2  -iM 2

2 2

where f 2/pv and k and Tref are parameters in the eddy viscosity formula

for tne shear layer.
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SECTION 9

CONCLUSIONS

The optical signature and thermochemical properties of rocket exhaust

plumes are sensitive functions of the many parameters determining the plume

flow field. The influence of the many inputs bearing on the plume signature

is basically through the temperature and species fields. The plume is a hot

mass of gas composed of a variety of optically active species. The precise

determination of the optical signature is based on accurate fluid mechanical

predictions leading to spatially resolved temperature, pressure and soecies

concentration fields. Both chemical kinetic and radiative transport processes

are driven by source or rate terms which are of the Arrenhius type.

Therefore, the IR signature is very sensitive to temperature and this

sensitivity increases as the level of plume temperature decreases. A model

plume has been analyzed based on mathematical analysis taking advantage of

this mathematical property. The direct quantitative relationship between

temperature field and species field and local station radiation has been

shown.

In the general case of multinozzle rocket plume flow fields the inviscid

pattern is a complex three dimmensional flow containing several shock wave

surfaces. The shock waves produce both near and far field temperature

increases and so are central to (chemical activity and) optical signature

predictions. While the shock wave structure is not the only fluid dynamic

process involved in determining the temperature distribution it is involved in

inviscid flow field calculation which is the primary skeleton on which is

built the total flow field picture. Accurate prediction of the shock wave

structure can be achieved only through detailed calculations which track the
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shock surfaces. Methods which "capture" the shock waves would require machine

memories and computer times which are far beyond what is presently available.

A floating three dimensional "fitted shock" computer code was develped for

the first time, which was capable of predicting a flow with a single shock

surface. The program also tracked the singularity that occurs at the point

where the impingement shock intersects the plume boundary. The floating shock

program became far to complex to program for the case where there are more

than a single shock and several triple points in the flow. A different

approach was investigated which does not explicitly track the discontinuites.

The idea was demonstrated on one dimensional unsteady flow to trace entropy

discontinuities. This method in a simple way tracks a slip surface using a

single grid point, where a "capturing method" smears the discontinuity over

10-15 grid points. The extension of these ideas to three dimensional flows is

a project for the future.

Theoretical development of the quantitative description of three

dimensional flows with interesection shock surfaces was achieved. The

intersection of two three shock surfaces leads to a complex process. The

resulting shock pattern depends not only on the strength of the two shock

waves but also on their relative orientation. The study showed how a local

analysis at the shock intersection line could be used to explain the shock

transmission/ reflection configuration at the intersection line. The image of

this intersection process in the hodograph plane (pressure/deflection)

explains the requirement for transition from a regular reflection process to a

Mach reflection process.
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The flow field associated with the axisymmetric plume with a Mach disc

has been analyzed using a new iteration scheme. The heart of this approach is

the integration of the governing interaction equation starting from the sonic

station and proceding upstream. This analysis which leads to the underlyina

interaction equation provides theoretical insight for the first time into the

mechanisms governing the Mach disc location. The analysis also includes

viscous mixing effects which have not as yet been studied in past

investigations. The integration of this program with the SPF plume code is a

project that should be undertaken in the future.

Future capabilities in prediction of three dimensional supersonic flows

as complex as multinozzle exhaust will increase as both new algorithms are

* developed and computer capabilites increase. Algorithm development must be

pursued to reduce the enormous computer logic necessary to track complex

intersecting shock patterns. Significant computer speed and size developments

could relax the requirements and alter the shape of the new algorithms. There

is a great amount of work necessary in the fundamental understanding of three

dimensional flows. There are a variety of complex conical processes such as

the the transition of the shock intersection from regular to irregular and the

shock lift off problem that must be studied, understood and cataloged in order

to make progress and achieve prediction capabilities in complex three

dimensional supersonic flows. These unit solutions are the three dimensional

counter parts of the familiar two dimensional wedge shock solution and two

dimensional Prandtl Meyer solutions that are used extensively as building

blocks and initial conditions in two dimensional problems.
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